
Introduction

Muscular dystrophies (MD) are a group of
heterogeneous inherited disorders characterized by
progressive muscle degeneration and frequently
accompanied by cardiomyopathy or mental retardation.
In many cases MD arise from perturbations of the
connection between the cytoskeletal elements of
striated muscle fibers and the surrounding basement
membrane, which leads to muscle fragility and
contraction-induced damage [1]. A primary
contribution to this interaction is offered by the
dystrophin-glycoprotein complex (DGC), a group of
tightly associated transmembrane and cytoskeletal
proteins that forms a molecular bridge between
dystrophin and the extracellular matrix [2] (Fig. 1 and

Table 1). DGC is formed by dystrophin, dystroglycan
complex (α- and β-DG), sarcoglycans (α, β, γ and δ),
sarcospan, syntrophins (α-1, β-1 and β-2) and
dystrobrevins. Dystrophin binds to cytoskeletal F-actin
and to the cytodomain of transmembraneous β-DG; the
extracellular domain of β-DG binds to the peripheral
membrane protein α-DG that interacts with several
components of the basement membrane of the skeletal
muscle, laminin, perlecan and agrin [3].

In 1987, dystrophin was identified as the protein
product of the Duchenne MD locus [4].  Dystrophin is
absent from muscle of patients affected by Duchenne
muscular dystrophy (DMD) whereas the milder Becker
muscular dystrophy (BMD) is caused by several
mutations that result in a reduced expression of
dystrophin or of truncated and only partially functional
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Summary. - Dystroglycan (DG) is an adhesion molecule composed of two subunits, α and β, that are
produced by the post-translational cleavage of a single precursor molecule. DG is a pivotal component of the
dystrophin-glycoprotein complex (DGC), which connects the extracellular matrix to the cytoskeleton in
skeletal muscle and many other tissues. Some muscular dystrophies are caused by mutations of DGC
components, such as dystrophin, sarcoglycan or laminin-2, or also of DGC-associated molecules, such as
caveolin-3. DG-null mice died during early embriogenesis and no neuromuscular diseases directly associated
to genetic abnormalities of DG were identified so far. However, DG plays a crucial role for muscle integrity
since its targeting at the sarcolemma is often perturbed in DGC-related neuromuscular disorders.
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Riassunto (Il distroglicano e le distrofie muscolari connesse al complesso di glicoproteine associate alla
distrofina). - Il distroglicano (DG) è una molecola di adesione composta da due subunità, α e β, prodotte da
un taglio post-traduzionale di un singolo precursore. Il DG è un componente centrale del complesso di
glicoproteine associate alla distrofina (DGC) che ha il ruolo di connettere la matrice extracellulare al
citoscheletro. Alcune distrofie muscolari sono causate da mutazioni nei componenti del DGC come la
distrofina, i sarcoglicani e la laminina-2 o anche in proteine associate al DGC come la caveolina-3. Non si
conoscono malattie neuromuscolari associate a mutazioni del DG e la distruzione (knock-out) del gene
provoca l’arresto dello sviluppo embrionale del topo. Il DG ha comunque un ruolo cruciale per la stabilità
della fibra muscolare poiché in diverse forme di distrofie muscolari connesse al DGC la sua localizzazione al
sarcolemma è profondamente perturbata. 

Parole chiave: distroglicano, distrofie muscolari, complesso di glicoproteine associate alla distrofina.



isoforms of the protein [5]. Mutations in genes
encoding sarcoglycans have been also shown to cause
some of the recessive limb-girdle muscular
dystrophies (LGMD) whereas no pathogenic
mutations have been identified so far in genes
encoding syntrophins or dystrobrevins [5, 6].
Furthermore, mutations in the gene encoding for the
α-2 chain of  the extracellular matrix protein laminin
give rise to congenital muscular dystrophy (CMD) [7].
All the aforementioned pathologies can be defined as
DGC-related neuromuscular disorders. 

No naturally occurring mutations of the DG gene
have been described so far. Only a mild form of
muscular dystrophy associated with secondary β-DG
deficiency has been described in a four-year-old Saudi
boy [8]. On the other hand, especially in DGC-related
MD, DG targeting at the sarcolemma is often perturbed,
and recently it was discovered that alteration of its post-
translational modification pattern represent important
secondary effects leading to severe muscular diseases
[9, 10] (Table 2). In DMD, both α- and β-DG are not
properly targeted at the sarcolemma, but in LGMDs and
in CMDs β-DG is still retained at the sarcolemma
while α-DG is absent [5].

Dystroglycan

DG is encoded by a single gene as a precursor
protein that is rapidly cleaved to generate two
subunits, α- and β-DG [11, 12] (Fig. 2). DG is
expressed in a wide variety of tissues: skeletal and
cardiac muscles, epithelia, central and peripheral
nervous systems [13]. 

Alpha-DG is a heavily glycosylated protein.
Although its predicted molecular weight is ≈ 72 kDa, it
appears as a broad smeared band on western blots with
an apparent molecular weight of 156 kDa in skeletal
muscle, 140 kDa in cardiac muscle and 120 kDa in
brain. The nature of α-DG glycosylation is still largely
unknown and few studies suggest that most glycans are
O-linked mannose-type [14]. Alpha-DG binds a number
of extracellular molecules such as laminin, agrin,
perlecan, neurexin and biglycan [12]. Primary sequence
analysis and electron microscopy showed that α-DG has
a dumbbell-like shape in which two globular domains,
N- and C-terminal domains, are connected by a central,
elongated and highly glycosylated mucin-like region
rich in prolines, serines and threonines [15]. Alpha-DG
interacts non-covalently with the membrane-spanning
β-DG. The binding epitope was mapped within the C-
terminus of α-DG in a region highly conserved of 36
aminoacids [16, 17]. 

The cytodomain of β-DG contains many proline
residues, which are likely to represent preferential sites
for protein-protein interactions. In fact, β-DG interacts
with different cytoplasmic proteins: dystrophin and
dystrophin related proteins, rapsyn, caveolin-3 and
Grb2 [18-20]. In addition to intracellular proteins, β-
DG binds also to transmembrane proteins such as the
sarcoglycans [21]. Several evidences suggest an
involvement of DG in signal transduction, as indicated
by the presence of potential SH2 and SH3 binding
motifs within the cytodomain of β-DG. In fact, it was
shown that phosporylation of Tyr892 is required for
recruiting SH2 domain containing proteins [22, 23]. 

DG forms a linkage between the cytoskeleton and
the extracellular matrix and it is crucial for the
structural stability of the plasma membrane [24].
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Table 1. - Components of dystrophin-glycoprotein complex (DGC), or DGC-associated, involved in muscular
dystrophies

Subcellular localization Protein Disease  

Cytoskeleton Dystrophin Duchenne muscular dystrophy 

Sarcolemma Sarcoglycans Limb-girdle muscular dystrophy 2C-F

Caveolin-3 Limb-girdle muscular dystrophy 1C 

Extracellular matrix Laminin-2 Congenital muscular dystrophy 

Table 2. - Expression of dystroglycan (DG) subunits in
various muscular dystrophies

Muscular dystrophy α-DG β-DG  

DMD Absent Absent 

LGMD Absent Normal 

MCMD Absent or reduced Normal 

MEB Hypoglycosylated Normal 

FCMD Hypoglycosylated Normal 

WWB Hypoglycosylated Normal 

DMD: Duchenne muscular dystrophy; LGMD: limb-girdle
muscular dystrophies; MCMD: merosin-deficient congenital
muscular dystrophies; MEB: muscle-eye-brain disease;
FCMD: Fukuyama congenital muscular dystrophy; WWS:
Walker-Warburg syndrome.
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Moreover, DG plays an essential role also during the
assembly of the first extra-embryonic basement
membrane during mammalian morphogenesis: DG-
null mouse embryos failed to further develop at day
6.5 when the Reichert’s basement membrane is
deposited [25] and embryoid bodies derived from DG
knockout mice have basement membranes severely
disrupted [26]. It has been proposed that the laminin
binding to α-DG induces the self-assembly of laminin
and a reorganization of the plasma-membrane
receptors and the cytoskeletal elements in a polygonal
network [27]. Chimaeric mice develop muscular
dystrophy whereas their muscular basement membrane
is correctly deposited and myogenesis is normal [28].

Recently, via a conditional knock-out approach, it has
been confirmed that disruption of the DG gene results
in the loss of the DGC in differentiated muscle but
only in a mild muscular dystrophy phenotype [29].
Interestingly, it was found that satellite cells (the
staminal cells of muscle), still expressing dystro-
glycan, are able to support a progressive regeneration
of skeletal muscle fibers. Thus, the regenerative
capacity of satellite cells expressing dystroglycan is
likely to be responsible for the mild disease observed
in mice [29]. DG is also involved in the maturation
and stabilization of nicotinic acethylcoline
receptors (nAChR) at the neuromuscular junction
(NMJ) [30, 31].

Recently, new evidences of an involvement of DG
in other pathological conditions emerged. DG acts as a
receptor for Mycobacterium leprae, the causative
agent of leprosy, and some arenaviruses, which cause
haemorrhagic fevers [32, 33]. Recently it was observed
that DG expression could be greatly altered in several
carcinomas. A possible mechanism is that the
extracellular region of β-DG is cleaved by a metallo-
protease and α-DG would lose its normal membrane-
associated location [34, 35].
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Fig. 1. - Dystrophin-glycoprotein complex (DGC). It
is a group of peripheral and integral membrane
proteins which forms a mechanical linkage between
the F-actin cytoskeleton and the extracellular  matrix.
The DGC in skeletal muscle is formed by a) the
cytosolic dystrophin, syntrophins and dystrobrevins; b)
the heavily glycosylated dystroglycan-complex, formed
by two subunits, α- and β-DG, and c) the four
sarcoglycans, α, β, γ and δ, plus the non-glycosylated
25 kDa sarcospan, which belongs to the T4
transmembrane protein family. Many muscular
dystrophies arise from mutations in DGC components
and in related DGC proteins as illustrated. DMD,
Duchenne muscular dystrophy, due to the absence of
dystrophin; BMD, Becker muscular Dystrophies, due to
the expression of truncated forms of dystrophin;
LGMD, limb-girdle muscular dystrophies, due to
mutations in one of the four sarcoglycans or in
caveolin-3; CMD, due to the absence of laminin-2 (also
named mMCMD, merosin congenital muscular
dystrophy) or to defects in glycosyltransferases leading
to hypoglycosylation of α-DG.
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Duchenne muscular dystrophy
and Becker muscular dystrophy

Duchenne muscular dystrophy (DMD) is one of the
most common and severe muscle disorders.
Genetically, it is inherited as a X-linked recessive
disease and it affects 1 out 3500 males. DMD is due to
mutation in the gene encoding dystrophin, the large
cytoskeletal protein that is located at the cytoplasmic
face of sarcolemma and that links actin to the
membrane [36]. 

In DMD muscle fibers, dystrophin is completely
absent [37]. The milder allelic disorder Becker
muscular dystrophy (BMD), is caused by mutations
that result in reduced expression of dystrophin or
expression of truncated partially functional forms of
the protein [38]. Patients with DMD have a childhood
onset phenotype and die before their twenties because
of respiratory and cardiac problems whereas patients
with BMD have moderate muscle weakness and may
have a normal life.

The absence of dystrophin in skeletal muscle leads
to a dramatic perturbation of the DGC: both α- and
β-DG, together with the other DGC proteins, leave their
normal sarcolemmal location [39]. The link between the
cytoskeleton and the extracellular matrix is largely
perturbed and muscle fibers become weak and
degenerated. In tissue-section immunostaining, muscle
appear necrotic with increased connective tissue within
its fibers [40]. Moreover, the lack of dystrophin not only
leads to a failure in forming a proper DGC but also to a
reduction of the binding affinity of other proteins for the
actin cytoskeleton [41].

It was shown that in mdx mice, the most common
animal model for DMD, the overexpression of Dp71, a
short isoform of dystrophin that contains the binding
site for DG but not for actin, restored the DGC
components [42]. However, Dp71 overexpression did
not rescue the dystrophic phenotype probably for the
inability of Dp71 to target actin at the inner face of
sarcolemma [43]. This experiment pointed out the
importance of dystrophin and DG for the proper
localization of DGC and for the fully integrity of
muscle fibers. On the other hand, a successful
reduction of the dystrophic phenotype was obtained
when utrophin, the autosomal homologue of
dystrophin harbouring both DG and actin binding sites,
was expressed in mdx mice [44].

During the last years, new approaches for rescuing
the dystrophic phenotype that are based on the
regenerative capacities of the muscle fibers are being
experimented. Rosenthal and colleagues have
demonstrated that the muscle specific overexpression
of  the insulin-like growth factor I (IGF-I) ameliorates
muscular dystrophy in mdx mice [45]. IGF-I plays a
critical role in muscle regeneration promoting the

proliferation and differentiation of satellite cells [46].
Overexpression of IGF-I induced muscle hypertrophy
and it defended muscle against the secondary
symptoms associated with the disease such as muscle
weakness. Recently, the same functional improvement
was obtained by the pharmacological inhibition of
myostatin  [47]. Myostatin is a new member of the
tumour growth factor-β family (TGF-β) which is
expressed in skeletal musle where suppresses muscle
growth [48]. Inhibition of myostatin in dystrophic
muscle increases muscle mass and improves the
muscle strength [47]. This experiment provides a novel
pharmacological approach for the treatment of muscle
diseases and circumvents the problems associated with
conventional gene therapy.   

Limb-girdle muscular dystrophies

Limb-girdle muscular dystrophies (LGMD)
represent a large group of muscular dystrophies that
shows different clinical severity. The mutated genes
causing LGMD encode proteins with different
locations within the skeletal muscle fibers, such as
sarcolemma, sarcomeres and even nuclear proteins [1].
Alterations of DG targeting have been found only in
two types of LMGD, sarcoglycanopathies and
caveolin-3-deficient LMGD, which are both DGC-
related. 

Sarcoglycanopathies

Sarcoglycanopathies are a group of four autosomal
recessive LGMD caused by mutations of the α, β, γ and
δ sarcoglycan genes, respectively. The clinical phenotype
of LGMD closely resembles that of DMD [49]. 

The sarcoglycans (SG) are a group of
transmembrane glycoproteins which is tightly
associated with the 25 kDa sarcospan, related to
tetraspannins [12, 50]. Beta, γ and δ sarcoglycans
interact with β-DG [51]. It was observed that in the
muscles of patients with LGMD, besides the absence
of one defective subunit, also the other SG and
sarcospan are not found at the sarcolemma [52].
Therefore, mutation of one of the four SG gene results
in the loss of the whole SG complex. Analysis of the
SG knock-outs mice confirmed this hypothesis [53-55]
(Table 3). Interestingly, sarcospan-deficient mice did
not develop muscular dystrophy and maintain normal
muscular functions [56]. 

The sarcolemmal location of sarcoglycans is a
prerequisite for the stabilization of DG and
accordingly in LGMD muscle DG is greatly reduced at
the sarcolemma. For example, in the cardiomyopathic
BIO 14.6 hamster, the animal model for LGMD-2F,
the primary absence of δ-SG results in the lack of DG
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[57]. Adenovirus-mediated gene transfer of δ-SG
normalized the levels of α- and β-DG and the
sarcolemma integrity [57]. In LGMD-2D the absence of
α-SG causes the disruption of the entire SG complex
and the consequent disruption of the interaction between
α-DG and the muscle basement membrane [54].

Caveolin-3-deficient limbe-girdle muscolar
dystrophies

Caveolins are widely expressed integral membrane
proteins and are the main component of caveolae,
vesicular invaginations of the plasma membrane which
are involved in trafficking and signal trasduction
events [58, 59]. The mammalian caveolin gene family
consists of three members: caveolins-1 and 2, which
are coexpressed in many tissues, and the muscle-
specific caveolin-3. Despite caveolin-3 is not an
integral component of the DGC, it was found a direct
association between caveolin-3 and β-DG: this
interaction involves the WW-like domain of caveolin-
3 and the WW-binding consensus sequence within the
cytoplasmic tail of β-DG (a WW domain harbors four
conserved aromatic amino acids including two
trypthophan residues) [60].

Loss or reduced expression of caveolin-3 leads to
the autosomal dominant LGMD-1C [61]. The disas-
sembly of caveolin-3 network dramatically affects the
expression of α-DG.  Although caveolin-3 and α-DG
do not interact, α-DG is almost completely lost from
the muscle fibers surface whereas β-DG is normally
localized at the sarcolemma [62]. It was recently
shown that double caveolin-1 and -3 knock out mice,
Cav-1-3-/-, develop a severe cardiomyophaty [63].

Interestingly, transgenic overexpression of
caveolin-3 in muscle fibers induces a Duchenne-like
muscular dystrophy phenotype, that is characterized

also by an increased number of caveolae [64]. Up-
regulation of caveolin-3 leads to the loss of dystrophin
and to a dramatic reduction of the β-DG levels. The
overexpression of caveolin-3 would alter the normal
processing or stoichiometry of DGC leading to its
degradation. 

Congenital muscular dystrophies

The acronym CMD (congenital muscular
dystrophy) is used to indicate another  heterogeneous
group of dystrophies that frequently leads to death in
early childhood. Mutations in various genes may lead
to the development of CMD [36]. Two major groups of
CMD could be identified: the merosin-deficient
congenital muscular dystrophies (MCMD) and three
forms due to secondary defects in posttranslational
modifications of α-DG due to abnormalities of some
glycosyltransferase, muscle-eye-brain disease (MEB),
Fukuyama congenital muscular dystrophy (FCMD)
and Walker-Warburg syndrome (WWS).

Merosin-deficient congenital muscular dystrophy 

Laminins are a family of large multidomain
glycoproteins (≈ 800 kDa) representing one of the
major components of basement membranes. Three
polypeptide chains associate to generate at least twelve
heterotrimeric (α, β, γ) isoforms, from laminin-1 to
laminin-12 [65]. Laminins bind α-DG through their so-
called G (globular) or LNS domains for their sequence
(and structural) similarity with domains found also in
neurexins and within the sex hormone-binding
globulin (SHBG). LNS domains occur in tandem array
in several extracellular molecules: laminin isoforms,
agrin, perlecan and neurexins [66, 67]. In skeletal
muscle and peripheral nerve, α-DG binds to laminin-2
(merosin), formed by α-2, β-1 and γ-1 chains. Alpha-
DG interacts with α-2(LNS1-3) and α-2(LNS4-5) with
high-affinity [66]. The dissociation constant, measured
by solid-phase radioligand binding assays, between
native α-DG, purified from skeletal muscle, and
laminin-1 is 8 nM [69]. The interaction with LNS is
calcium-dependent and it is likely to involve a
positively charged surface of the LNS subdomains and
the negatively charged carbohydrate groups of α-DG
[68], as supported by the observation that full deglyco-
sylation of native α-DG abolishes the interaction with
laminin [70]. 

Mutations in the laminin-α2 chain gene cause a
severe form of CMD, commonly referred to as merosin-
deficient congenital muscular dystrophy (MCMD).
About 50% of patients with MCMD show a primary
deficiency of laminin-2 that brings to dramatic
perturbations of the basement membrane molecular
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Table 3. - Mouse models for muscular dystrophies
related to the dystrophin-glycoprotein complex (DGC)

Genotype Gene product  Phenotype 

mdx Dystrophin Mild 

UTRN-/- Utrophin None 

mdx/UTRN-/- Dystrophin/ utrophin Severe 

dy Laminin-α2 Severe 

DAG1-/- Dystroglycan Embryonic  lethal 

DAG1-/- chimera Dystroglycan Severe 

Scga-/- α-Sarcoglycan Mild 

Scgb-/- β-Sarcoglycan Mild 

Scgg-/- γ-Sarcoglycan Severe 

Scgad-/- δ-Sarcoglycan Severe 

Cav-3-/- Caveolin-3 Severe 



architecture [37] (Fig. 3). Recently, the loss of α-DG
from the membrane was observed [71], whereas older
studies had previously emphasized that DG and DGC
were unaffected in the MCMD phenotype [72, 73]. 

The molecular scenario underlining MCMD is
certainly complex. It has been found that in MCMD
muscle α-DG is significantly reduced from the
sarcolemma whereas the transmembrane β-DG is still
present and its expression level seems to be 3-fold
higher than in normal muscle [71] (Fig. 4). It is likely
that α-DG is greatly stabilized by the interaction with its
extracellular matrix binding partners since it was shown
that in dyW transgenic mice (the animal model for
MCMD (Table 3) the overexpression of the muscle
isoform of agrin in a miniaturized form, harboring both
laminin and α-DG binding sites, is able to significantly
alleviate the dystrophic symptoms [71]. This experiment
shows that the interaction between DG and its
extracellular binding partners could be exploited as a
new and elegant tool for rescuing muscular dystrophies.

Another molecular aspect of the dystrophic
phenotype observed in MCDM and dyW mice, depends
on the different biochemical behavior of laminin
isoforms. In fact, it was shown that the binding between
α-DG and laminin-2 is not inhibited by heparin, which
is instead able to significantly inhibit the interaction
with other laminin isoforms [74]. In dyW, the absence of
laminin-2 leads to an overexpression of other laminin
types (mainly laminin-4) [75], whose interaction with
α-DG is strongly inhibited by heparin [74]. Heparin
mimics the biological activities of the abundantly
expressed heparan sulfate proteoglycans, therefore it
was proposed that heparan sulfate proteoglycans may
dramatically perturb α-DG binding to the laminin
variants overexpressed in MCDM muscles. This
differential heparin sensitivity may help to identify a
mechanism for specifically modulating the interaction
of α-DG to different extracellular ligands [75].

Post-translational modifications of dystroglycan

For extracellular matrix molecules, glycosylation
often represents the most important post-translational
event since carbohydrates play an essential role for the
core protein stability and may also modulate the
interaction with binding partners. The proper post-
translational maturation of α-DG was recently
identified as a crucial step in order to achieve the final
assembly and efficient function of muscle tissues [10].
Defects in a number of glycosyltransferases were
identified as the causes of three recessive CMD,
muscle-eye-brain disease (MEB), Fukuyama
congenital muscular dystrophy (FCMD) and Walker-
Warburg syndrome (WWS), all characterized by
severe muscle weekness and mental retardation [10].
MEB and WWS are associated with mutations in the

gene encoding two glycosyltransferase that
participates in the synthesis O-mannosyl glycans,
POMGnT1 and POMT1 respectively [76, 77].       

FCMD, a disease only found in Japan, is due to
mutations of the fukutin gene, an enzyme  that is likely
to be involved in the modification of cell-surface
glycoproteins [78]. A fukutin-related protein (FKRP)
gene was cloned by computational homology analysis
and FKRP mutations were shown to be associated with
CMD and with LGMD-2I [79]. An animal model
supports the link between defective glycosylation and
muscular dystrophy: the mice affected by myophaty
(myd) harbors a mutation in the LARGE gene encoding
for a glycosyltransferase [53].

In the aforementioned dystrophies and in the myd
mice, α-DG is expressed in a hypoglycosylated form
and this is thought to be a major secondary defect that
leads to the dystrophic phenotype [80]. As mentioned
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Fig. 3. - Hematoxylin-eosin staining of triceps
muscle from wild-type and laminin-α2 deficient
mice. (A) In a physiological condition, all the muscle
fibres have a similar size and peripherally localized
nuclei. (B) Laminin-α2 deficient muscle appears
necrotic with central nuclei and increased connective
tissue within the fibers.

Fig. 4. - Alpha-DG immunostaing of triceps muscle
from wild type  and laminin-α2 deficient mice. (A) In
wild type muscle α-DG is homogeneously localized at
the sarcolemma of the muscle fibers. (B) In laminin-α2
deficient muscle the amount of alpha-DG is greatly
reduced and its localization is not homogeneous. 
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above, carbohydrate moieties of α-DG are believed to
play a major role in the interaction between α-DG and
laminin. Using overlay binding assays it was observed
that, in MEB and FCMD patients and in myd mice, this
interaction is dramatically reduced [80] The deglyco-
sylation of α-DG weakens the interaction with
laminin-2 and it is likely to represent a common
molecular phenomenon in a large number of CMD.
Recently, an amelioration of the dystrophic phenotype
in mdx mice was obtained via the overexpression of
GlaNac transferase which would restore the proper
glycosylation of α-DG [81]. 

Concluding remarks

During the last years, it became evident that α- and
β-DG can be differently perturbed in a number of
muscular dystrophies. While the β-subunit is only
absent in DMD, α-DG is greatly reduced or
abnormally processed in all the muscular dystrophies
which we have reviewed. The central role of α-DG in
the pathogenesis of muscular dystrophies emphasizes
the role of DG as a linker between the extracellular
matrix and cytoskeleton. It was suggested that an
increase of protease activity, typical of muscular
dystrophy, leads to the unspecific degradation of
proteins within the extracellular matrix [59]. This
might explain the reason why different forms of
muscular dystrophy display the secondary loss of α-
DG. The failure in forming a strong interaction with
laminin (as in congenital muscular dystrophies) could
make α-DG prone to the action of proteolytic enzimes.
In addition, also the hypoglycosylation observed in
some neuromuscular disorders could both affect the
interaction with basement membrane molecules and
favour the action of proteases. Understanding at the
molecular level the role of DG in muscle should be
considered as one of the major factor in order to
develop efficient therapeutical approaches for the
treatment of a large number of muscular dystrophies.
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