
Statistical approaches to the 3R rule
of animal experimentation

Since their development by W.M.S. Russel and
R.L. Burch in 1959 [1], the 3R rule of the humane
treatment of animals in research (i.e., Replacement,
Reduction, and Refinement) have contributed to
improving both the wellbeing of experimental animals
and the quality of experiments. Regarding statistical
approaches to the 3R, these have mainly contributed to
Reduction, although when reducing the number of
animals, the data often do not suffice for performing a
meaningful statistical analysis and the experiment
must be repeated. Statistical approaches may also
contribute to Refinement by allowing more
information to be obtained without increasing the
number of animals, although practically no studies

have adopted this approach. Recently, statistical
knowledge has also contributed to Replacement, with
computer and mathematical modelling being used as
alternatives to animal experimentation.

Whatever the approach, for both ethical and
economic reasons, it is important to use the least
number of animals possible, though not so few as to
fail to detect biologically important effects or to
necessitate the repetition of experiments [2]. In
general, the number of animals should be reduced
without compromising the scientific quality of
research or disrupting scientific progress. In reviews of
the literature, it has been suggested that the number of
laboratory animals used could often have been reduced
while still obtaining statistically valid data [3-5]. With
regard to animal use in Europe, in 1997, during the
“Target 2000” Conference held in Brussels, it was
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Riassunto (Approcci biostatistici alla riduzione del numero degli animali utilizzati nelle sperimentazioni
biomediche). - Per ragioni etiche, nelle sperimentazioni biomediche è opportuno utilizzare il minor numero
possibile di animali, ma non una quantità così bassa da impedire l’identificazione di effetti biologicamente
importanti o da richiedere la ripetizione degli esperimenti. In questo articolo vengono descritti gli approcci
biostatistici che possono contribuire alla riduzione della numerosità degli animali nelle singole sperimen-
tazioni o all’incremento della qualità intrinseca delle sperimentazioni stesse, in modo che successivamente
siano necessari meno studi (e, conseguentemente, meno animali). Gli approcci qui discussi riguardano diverse
fasi dell’esecuzione di un esperimento, e più specificamente la pianificazione del disegno sperimentale, il
calcolo della numerosità campionaria, il controllo della variabilità, la scelta della variabile risposta, la
postulazione dell’ipotesi statistica da verificare, la selezione della procedura per l’analisi dei dati e, infine, l’in-
terpretazione dei risultati e la loro presentazione in forma adeguata.
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stated that an adequate biostatistical approach could
contribute to reducing the number of animals used in
biomedical research and testing in Europe by 50%. In
1998, FRAME (Fund for the Replacement of Animals
in Medical Experiments) established a “Reduction
Committee” consisting of experienced professionals
in the fields of statistics, experimental design, and
animal welfare, among others, with the aim of
promoting suitable experimental designs and
statistical methods.

The use of animals in research is in large part
justified by the results obtained; thus, from an ethical
standpoint, communicating these results is crucial, even
when they are not statistically significant. In this way it
can be ensured that duplicate studies that generate
redundant data are not carried out, which would
decrease the use of animals. In fact, the widespread
communication of results is a “benefit” factor in many
models of the ethical assessment of animal research [6].
It is thus the researcher’s responsibility to publish the
results as accurately and completely as possible and to
the widest possible audience.

In the present work, we describe biostatistical
approaches that can contribute to reducing the
number of animals used in research, whether by
reducing the number of animals necessary for
obtaining the desired information in a single study or
by optimising the quality of studies so that fewer
subsequent studies will be needed to understand the
phenomenon being investigated. The described
approaches regard, and are important for, different
phases of experimentation, specifically: planning the
experimental design and calculating the sample size,
controlling variability, choosing the response
variable, postulating the statistical hypothesis to be
tested, choosing the procedure for analysing data,
and, last but not least, interpreting and suitably
presenting the results [3].

The optimal experimental design

A well-designed study ideally allows biases to be
avoided and is sufficiently powerful to produce
statistically significant results, which can allow the
repetition of studies to be avoided. In general, the design
should conform to one of the formal designs described
in the literature [7-11], or to a combination of these
designs, each of which considers the specific features
and constraints of a given experimental material and of
the nature of the investigation. A brief description of
several types of study designs is provided below.

The simplest design is the completely randomized
design (CRD), which assumes that independent
experimental units (e.g., laboratory animals) are

assigned to different levels of a factor under study
(e.g., different treatment groups). To guarantee that the
CRD is properly implemented, the different units must
be assigned to the different levels of the factor in a
random manner, meaning that every unit (or subject)
has an equal chance of being assigned to any of the
experimental levels (or groups). Randomization
ensures that the response of one or more of the groups
is not biased by the effects of unknown variables or by
sources of variation that cannot be controlled. For
example, among animals housed in the same cage,
being among the first animals to have been captured
could have an effect on the response being studied;
thus randomization should be used so that these
animals are not assigned to the same group. The
ultimate goal is to equalise the groups. Although this
cannot be guaranteed, the chance of creating unequal
groups diminishes as the sample size increases. To
facilitate the randomization process, tables of random
numbers or specific computer software can be used.

In the completely randomized factorial design
(CRFD), the experimental units are randomly assigned
to combinations of levels of two or more factors, and
CRFD allows the effects of the different factors and
their interactions to be evaluated simultaneously,
although this entails a heavier workload for the
researcher. Obviously, in factorial designs, all of the
levels of a given factor must be constant in the
different levels of the other factors (e.g., when
different drugs are evaluated on different days
following treatment, the levels of the factor “time
elapsed from treatment to evaluation” must be the
same for the different drug groups). These designs are
particularly useful in the pharmaceutical industry,
where compounds are subjected to a cascade of
screening tests for assessing biological activity against
a specific target. Many factors can influence the
response of experimental animals to treatment (e.g.,
gender, strain, age, and protocol-specific factors, such
as the timing and means of administering treatment).
CRFD can be used to explore which factors and levels
of these factors will maximise the difference between
a control and a treatment, which is more effective and
efficient than varying one factor at a time. The results
can be used to design more efficient experiments,
either by reducing the number of animals or by
increasing the sensitivity of the experiment, so that
smaller biological effects can be detected. This could
help to reduce animal use, especially in the
pharmaceutical industry [12].

In a randomized block design (RBD), all of the
different levels of a factor are randomly assigned to
experimental units of the same block. A block is a group
of units characterised by dependency (e.g., pups of the
same litter, individuals of the same family, animals
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housed in groups, or members of a social group), which
renders the units of the same block homogeneous and
the units of different blocks heterogeneous. A block
factor should also be recognised when an experiment is
divided into two or more parts carried out at different
times or by different researchers. In RBD, by controlling
variability among blocks, the effect of a factor is
evaluated with greater precision and can thus be
highlighted using fewer experimental units. The relative
efficiency [13] of RBD, with respect to CRD, is used to
determine whether or not the reduction in residual
variability, and thus the increase in the precision of a
RBD, justifies the complexity of taking into account the
blocks (both for designing and conducting the
experiment and for analysing the data). Examples of
RBD include repeated-measure designs, in which all of
the levels of an experimental factor (e.g., different
stimuli, drugs, or drug doses) are tested on the same
subject in a random order with wash-out intervals, and
growth-curve designs.

A full factorial design entails evaluating all
combinations of treatment and can thus require
numerous subjects. However, if the principal objective
of an experiment is to estimate and test the main effects
and a few lower-order interactions and if it can be safely
assumed that the other effects are negligible, an
incomplete block design or a fractional factorial design
can provide the desired information, using much fewer
animals. In incomplete block design, only some of the
combinations of treatment are assigned to each block, in
such a way that across the blocks each treatment
combination is evaluated the same number of times.
Analogously, fractional factorial design requires testing
only a fraction of the treatment combinations that would
be needed for a full factorial design. When adopting an
incomplete block design or a fractional factorial design,
the researcher must specify the effects that he/she wants
to include in the model so as not to have more
parameters than it is possible to estimate. Specifically, it
is necessary to exclude the negligible effects of the
interactions between the block and treatment or of the
interactions among treatments.

A Latin square design (LSD) allows the main
effects of three different factors, each with k levels, to
be evaluated using only k.k subjects (the
corresponding full factorial design would require
k.k.k subjects). In an LSD, k animals undergoing one
of the k levels of a factor and each animal undergoing
a different level of the second factor are randomly
assigned to k levels of the third factor. This assigning
of animals to the combination of the levels of the
three factors is repeated for all levels of the first
factor, taking care that the combinations of the levels
of the second factor with the levels of the third factor
are different in the different levels of the first factor.

LSD is used when the interactions are negligible,
usually to balance nuisance factors such as the order
in which the drugs are administered or previous
treatments, including also different degrees of
manipulation. When a fourth factor emerges, which
can simply consist of the researcher, an LSD may be
modified into a Greco-Latin square design (GLSD)
by assigning the levels of the fourth factor as done for
the third factor, ensuring that none of the
combinations between levels of the third and fourth
factors repeat in the same square. The factors
involved in an LSD or in a GLSD may differ; they
may be both fixed effect factors and/or random effect
factors, and it is crucial to consider their nature in the
analysis, so as to increase efficiency. To increase the
degree of freedom, the squares may be repeated. The
schemes of LSD and GLSD for some values of k are
reported in the textbook of Fleiss [13].

In split plot design (SPD), the levels of one factor
(so-called “subplot treatments”) are applied to the
ultimate, single experimental units, and the levels of
the other factor (the so-called “whole-plot treatment”)
are applied to sets of the ultimate units. SPD is
frequently used in studies of the interactions of
prenatal treatments with postnatal treatments, where
pregnant subjects are exposed to the different levels of
a factor (or a combination of levels of factors) and
offspring are subsequently exposed to different levels
of a factor (or a combination of levels of factors).

In sequential experimental designs (SED), the
decision as to the total number of animals to test is
reviewed as each animal’s data is collected and
evaluated. SED are more powerful than other designs,
in that they require fewer subjects to come to a
conclusion with the same degree of certainty.
However, these designs are neither suitable for rare or
long-lasting events, nor when the experiments require
long periods of time or are too expensive to be carried
out for a single experimental subject at a time.
Nevertheless, SED are the most ethical alternative
when attempting to reduce the number of animals to
the absolute minimum, which is especially desirable
when experiments are particularly aversive [14].

In planning experiments, pilot studies can provide
useful information and are commonly used for new
procedures or when new compounds are being tested.
Pilot studies use a small number of animals to generate
preliminary data which provide evidence supporting
the rationale of the proposal; they can also be used to
further evaluate the study question, hypotheses, and
procedures.

When possible, experiments should be conducted
“blindly” with respect to the treatment, using coded
samples, so that the treatment group remains unknown
until the data are analysed.
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Choosing the control group

The use of a control group is important for
minimising the impact of extraneous variables or for
recognising unwanted variables. In positive controls,
changes are expected and act as a standard against
which to measure differences in severity among
experimental groups. Experimental groups are
investigated to determine whether these alterations
may be prevented or cured. Negative controls are
expected to produce no change from the normal state
and are used to ensure that an unknown variable is not
adversely affecting the animals, which might result in
a false-positive conclusion. Sham controls are used to
mimic a procedure or treatment without actually
performing the procedure or using the substance being
tested. For example, in the surgical implantation of
“X” in the abdominal cavity, the sham control
undergoes the same surgical procedure as the treated
animal (i.e., the abdominal cavity is opened) yet
without having the “X” implanted. Another example of
a sham control is the use of a placebo in drug trials. In
vehicle controls, the supposedly innocuous substance
(e.g., saline or mineral oil) acting as a vehicle for the
experimental compound is administered alone and in
the same manner in which it will be used with the
experimental compound, making it possible to
determine whether the vehicle itself has any effects. A
comparative control often consists of a positive control
that receives a clinically accepted treatment and is used
for direct comparisons with an animal receiving a new
treatment. In certain cases, the same control group can
be used for more than one treatment group. The use of
historical controls can also be considered, especially
for endpoints and control substances that have been
commonly used in animal experimentation and that
have provided consistently concordant results.

Controlling experimental variability

In designing experiments, potential variability and
its effect on the results should be taken into account, so
that the experiment will be efficient and provide the
most reliable information, ultimately contributing to
reducing the use of animals.

Many variables, in addition to those related to the
experiment itself, can affect biological responses and
thus produce biases in the results, especially when such
variables are not constant for the different experimental
groups [15, 16]. Variability can be controlled by: a)
using homogeneous animals (inbred; with the same
previous experience or type of manipulation; same age
and/or weight); b) excluding the presence of diseases,
including both infectious diseases and parasites, with

particular regard for sub-clinical conditions; c)
controlling environmental variables and/or the quality
of husbandry (ventilation, temperature, light cycles,
relative humidity, room noise levels, ammonia levels,
cage type, population density, and quality of food and
water), in addition to smell hormones produced by
animals during the actual experiment, which can
frighten or cause stress to the other animals; d) adopting
the same standardised methodology; and e) using a
suitable method for accurately measuring the response
variable.

All of these factors should be considered in the
designing and planning of the experiment. However, in
experiments in which this has not been done, or to
confirm the validity of these factors, some confounders
and/or biases may be evaluated by including blocks or
covariates in the statistical analysis. During the actual
experiment, in addition to the primary response
variable, many variables are often recorded and may
be incorporated into the statistical analysis so as to
increase precision and power (e.g., age, body weight at
several points in time, food and water consumption,
haematology, clinical biochemistry, and behavioural
response). These variables can also be useful in
assessing the randomisation and in identifying outliers.
They can also contribute to new hypotheses being
formulated, to increasing the potential to generalise the
results, and to explaining differences in results among
different experiments or studies, not to mention that
the appropriate use of these variables could increase
the knowledge in a given area, reducing the number of
experiments and thus the number of animals used.

Choosing the response variable

The number of subjects to be used depends upon
the nature of the response variable. For given values of
both type I error probability and statistical power, a
binary response (dichotomous variable) requires the
largest sample, with smaller samples needed for a
categorical variable. A continuous variable requires the
smallest sample and is the most powerful in detecting
differences; thus, when possible, continuous variables
should be used.

Formulating the statistical hypothesis

Clearly defining the problem statement, objectives,
and hypotheses is crucial to the success of an
experiment. Firstly, the specific questions of a working
hypothesis and biologically significant effect must be
addressed. The hypothesis should then be expressed in
two distinct and clearly defined outcomes: a null
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hypothesis, defined as no difference among
experimental groups, and an alternative hypothesis,
defined as a true difference among experimental groups.

Clearly identifying objectives that allow more
precise hypotheses to be developed may reduce the
number of experimental subjects. In certain cases, a
general problem statement may be subdivided into
multiple precise objectives. For example, the problem
“to determine the time of a distinct peak” can be
evaluated separately from the problem “to determine
the size of the peak”, so as to avoid using the number
of animals that would be needed to achieve the latter
for each point in time at which the peak occurs [17].

Choosing the most appropriate statistical analysis

The objective of a statistical analysis is to extract
the most information possible from the data and to take
into account biological variability and measurement
error in interpreting the data. Statistical analyses are
usually performed using standardised methods, the
choice of which depends on a variety of factors. For
example, to analyse numerical data, analysis of
variance (ANOVA) can be used [7-11, 18-20]. In
certain cases, data need to be transformed to satisfy
assumptions, though most parametric methods are
robust against moderate departure from the
assumptions. A log transformation is often appropriate
when the dependent variable is a concentration,
whereas when data are expressed as proportions or
percentages a logit or angular transformation may be
suitable. Counts with low means (sampled from a
Poisson distribution) may be transformed by the
square root of the observations, whereas
transformation may not be necessary when the mean
counts are reasonably high. When the assumptions of
ANOVA are violated, non-parametric methods, which
entail replacing individual observations with their
ranks, can be used [19, 20]. However, these methods
result in the loss of some information and thus lack
power in situations where parametric tests would be
more suitable, although they may be more powerful in
cases where parametric methods are not appropriate.

In addition to choosing between parametric and
non-parametric tests or between transformed and non-
transformed data, the choice of the most appropriate
statistical test and/or data-analysis technique depends
on a number of factors. For example, for censored
data, a survival analysis is preferable to a simple t-test;
for factorial designs, ANOVA is more appropriate than
single t-tests; and to control for the effect of covariates
that could be responsible for the observed response,
covariance analysis should be used instead of separate
analyses for the response variable and the covariates.

Moreover, blocks or other random-effect factors
should be included in the model; post-hoc comparisons
or correction criteria to control for the probability of
type I errors should be adopted [7-11, 19-21]; and
differences in variability among groups should be
evaluated. For categorical or qualitative data, the chi-
square test or Fisher’s exact probability test should be
used, whereas for ordinal categorical data the chi-
square test for trend is more appropriate than the
simple chi-square test. In certain cases it may be more
appropriate to perform an analysis of the correlation
between two numerical variables (or between their
ranks) or a regression analysis to quantify the
relationship between a dependent variable and one or
more independent variables.

The most appropriate statistical procedure should
be chosen by an expert. Moreover, a deeper
understanding of the phenomenon being investigated,
and a consequent reduction in the number of
experiments (and thus in the number of animals used)
could be obtained through ad hoc analyses for complex
structured data or multivariate statistical analyses [3,
22]. Previous knowledge of the investigated
phenomena can be exploited using a Bayesian
procedure [23], although this requires a complex
formulation of the problem and intense calculations,
implemented in specific software that is not easily
accessible. For these reasons, the Bayesian approach
can only be carried out by a qualified statistician,
which probably explains why it is so rarely adopted.
When similar studies have been previously conducted,
their results, if applicable and valid, may be included
in a meta-analysis [24], which allows the given
hypotheses to be evaluated without using additional
experimental subjects.

Data-quality control

The researcher has the moral responsibility of
properly performing data collection, entry, and
analysis. To detect errors in data entry, quality
assurance procedures should be developed and
incorporated into the experimental design (graphic
methods are available in most statistical packages). If
outliers are identified, the accuracy of the records
should first be checked, so as to exclude data-entry
errors; it should also be confirmed that there were no
unusual occurrences or circumstances in performing
the experiment on the animal in question. If no errors
or unusual circumstances are discovered, the outlier
can be discarded, although it could be useful to
perform the statistical analysis both with and without
the suspected data, so as to evaluate the effect on the
results. When multiple outliers are present, it should be
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checked whether or not the experiment had been
performed sloppily, and statistical analysis should be
used to determine whether these were true outliers or
instead actual outcomes of the research which should
not be discarded.

Interpreting and presenting results

The amount and quality of information drawn from
the obtained data depends on the researcher’s ability to
interpret and present the data, which derives from both
personal experience and knowledge of the theory of
biostatistical methods. Researchers should avoid
making claims about the effects of treatment when the
results of a study are statistically significant but of
little or no biological importance. The magnitude of
statistically significant effects should always be
specified with a measure of precision (confidence
interval, standard deviation, or standard error) and
exact p-values, and the biological relevance of the
effects should be addressed.

When a non-statistically significant effect is found,
researchers should use caution in concluding that the
treatment had no effect, in that the result could be due
to an insufficiently large sample size or to great
experimental variability. A power analysis should be
used to show the magnitude of the biological effect
that the study was probably able to detect.

The descriptive statistics chosen to synthesise the
data obtained should be consistent with the criteria
adopted for the statistical analysis. For example, when
a non-parametric approach is used, medians and
interquartile ranges should be reported instead of
means and standard deviations. When presenting the
results of multiple comparisons, pooled standard error,
obtained from the mean square error of the ANOVA
results, should be reported, rather than single standard
errors (or standard deviations). When interactions
reach statistical significance, the results and comments
regarding the main effects should be carefully
considered. Finally, percentage frequency should be
calculated for categorical data.

Calculating sample size and statistical power

There is no justification for failing to estimate the
appropriate sample size or statistical power of an
experiment [25, 26]. In fact, a mathematical
relationship exists among the size of the effect of
interest (the difference of biological significance),
the standard deviation (usually taken from previous
studies), the significance level (usually 0.05 or
0.01), the statistical power (usually 80% or 90%),
the type of alternative hypothesis (bi-directional or

unidirectional), and the sample size; and any five of
these parameters can be used to determine the
remaining parameter. Although the formulae are
complex, especially when the statistical problem is
not a mere comparison between the means of two
experimental groups, software packages are
available for carrying out these calculations [27, 28].
In planning an experiment, the unknown parameter is
the sample size, that is, the number of subjects needed
to produce a definite result.

Conclusions

Refining statistical approaches so that the data
collected and analysed are as accurate, valid, and
informative as possible can contribute to reducing the
use of animals in research. Not only can these
approaches reduce the number of animals necessary
for a single experiment but they can also, and perhaps
more importantly, increase the quality of studies,
optimising the productivity of the animals and
allowing the repetition of experiments to be avoided.
Well designed and analysed experiments generate
scientifically valid and reproducible data, which
should be the ultimate goal of any scientific
investigation, and the use of poorly designed or
analysed animal experiments is no longer justifiable
from an ethical standpoint.
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