
Introduction

The results of parametric analysis of variance
(ANOVA), one of the most commonly used methods
for analysing experimental data, can be considered as
accurate if the assumptions on which the analysis is
based are respected, specifically: the normality of the
distribution of the sampled data, the homogeneity of
variance among the groups being compared (i.e.,
homoscedasticity), and, for certain experimental
designs, sphericity. In the present work, ANOVA
assumptions are described, together with methods for
detecting violations of these assumptions (i.e.,
descriptive statistics and significance tests) and an
example of the application of these methods.
Suggestions on the multi-step procedure for analysing
data with parametric ANOVA are also provided.

Experimental designs

There are three main types of experimental designs:
a) completely randomised designs; b) randomised block
designs;  and c) split-plot designs.

Completely randomised designs

In completely randomised designs (CRD), a
random sample of units is extracted from a population
and then randomly divided into two or more
subgroups, each of which is assigned to a different
treatment (one-factor CRD) or to a combination of
treatments (factorial CRD). Treatment factor is usually
a fixed effect factor. The sample size in the different
subgroups can be equal (balanced design) or not
(unbalanced design), and although balancing is not
required, it is desirable.

Randomised block designs

In randomised block designs (RBD), a random
sample of blocks is extracted from a population, with
each block consisting of more than one unit. The units
within each block are then randomly assigned to
different treatments (one-factor RBD) or to
combinations of treatments (factorial RBD). Treatment
factor is usually a fixed effect factor, whereas blocking
factor is a random effect factor. The sample size in the
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Riassunto (Verifica della violazione degli assunti in un modello misto di analisi della varianza). -
L’analisi della varianza (ANOVA) parametrica è uno dei metodi più frequentemente utilizzati per l’analisi di
dati sperimentali. I risultati dell’ANOVA parametrica sono corretti se gli assunti su cui l’ANOVA si basa sono
rispettati. Tali assunti comprendono la normalità della distribuzione dei dati, l’omogeneità di varianza
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Un esempio illustra l’applicazione delle procedure descritte. Infine, vengono forniti alcuni suggerimenti su
una procedura a più passi per l’analisi dei dati con l’ANOVA parametrica.
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different subgroups is necessarily equal (balanced
design), unless there are missing values in the
experiment.

A particular type of RBD is the repeated measure
design (RMD), in which a random sample of units is
extracted from a population and each unit is repeatedly
assigned to different treatments (one-factor RMD) or
to combinations of treatments (factorial RMD), with
the treatment administered in a randomised order
within each unit. In some cases, such as when the
effect of time on the response variable is to be
evaluated, the units can receive the same treatment,
which is evaluated at different times.

Split-plot designs

Split-plot designs are a combination of CRD and
RBD. A random sample of blocks, each consisting of
more than one unit, is extracted from a population. The
blocks are randomly divided into two or more
subgroups, each assigned to a different treatment or to
a combination of treatments (between-subject
factor/s). The units within each block are randomly
assigned to different treatments or to combinations of
treatments (within-subject factor/s) or are evaluated at
different times (repeated measures). Between-subject,
within-subject, and repeated-measure factors are
usually fixed effect factors, whereas blocks and units
are random effect factors.

For split-plot designs, the sample size in the final
cells can be quite small (usually ranging from 6 to 12
units). When the experiment is designed as a complete
split-litter, only one unit is included in each final cell.

The small sample size in the final cells can reduce
the robustness of parametric ANOVA because of
departures from the assumptions of normality and
homoscedasticity. This can produce levels of
significance that are far from the nominal ones, either
furnishing significant results when the null hypothesis
H0 is true (Type I error = loss of validity) or no
significant results when the null hypothesis H0 is false
(Type II error = loss of efficiency). The small final
sample size can also make it difficult to detect
violations of the assumptions.

Normality

The assumption of normality implies that the
distribution of the variable to be analysed by ANOVA
is normal in the population from which units (or blocks
of units) are sampled. It is also assumed that the
treatments administered to the units (and/or blocks of
units) in the different subgroups do not affect the shape
of the distribution of the variable and that only the
mean value of the variable changes among subgroups.

Unimodal frequency distributions are characterised by
two parameters: skewness and kurtosis. Skewness
describes the asymmetry of a distribution. It is equal to
0 for unimodal symmetrical distributions, such as the
normal distribution, whereas it is negative for
unimodal distributions with a longer left tail (towards
lower values of the variable) and positive for
distributions with a longer right tail (towards higher
values). Kurtosis describes the steepness of the
unimodal frequency curve towards the mode. As
proposed by Karl Pearson in 1906, it is usually
measured by the moment-ratio β2 = µ4/µ2

2. The
normal distribution is characterised by a kurtosis index
equal to 3, which is adopted as a standard for other
distributions. However, for the sake of simplicity, the
kurtosis index β2 is usually centred by subtracting 3, so
that it is equal to 0 in normal distributions.
Distributions with a positive, 0, and negative kurtosis
index are referred to as, respectively, “leptokurtic”
(heavy-tailedness), “mesokurtic”, and “platykurtic”
(light-tailedness).

ANOVA is considered to be robust against slight
violations of the normality assumption. For example, in
CRD the F test is not seriously affected by either
moderate skewness, unless the design is unbalanced, or
by light- or heavy-tailedness, unless the sample sizes in
the final cells are very small (less than 5) or kurtosis is
extreme (less than -1 or greater than 2). For these
reasons, and because it is difficult to determine the
shape, skewness, and kurtosis of the distribution of the
variables in advance, violations of the normality
assumption should be assessed before applying ANOVA
to experimental data. To do so, descriptive statistics,
diagnostic plots, and significance tests can be used.

Descriptive statistics include the above-mentioned
skewness and kurtosis indexes, each of which can be
approximately tested for deviations from normality by
dividing it by its standard error. The ratio can be
roughly read as a standardised score derived from a
normal distribution, with absolute values exceeding 2
expected to be rare in normal samples. These indexes
can also be tested using significance tests (see below).
Diagnostic plots (i.e., boxplots and normal probability
plots) can also provide information on normality. A
boxplot is a graph that summarises the distribution of a
set of data, providing information on the median and
the mean (represented by, respectively, a straight line
and a symbol within the box), the first and third
quartiles (bottom and top lines of the box,
respectively), and outliers (symbols outside of the
box). Whiskers can be present and can cover the entire
range of data or a defined percentile range. If the
distribution is normal, the mean and median are equal
and in the middle of the box, outliers are not present,
and the whiskers are symmetrical with respect to the
box. The presence of outliers on only one side of the
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box suggests that skewness is present in the
distribution of data, whereas if appearing on both sides
they suggest the presence of heavy-tailedness.
Skewness is also likely when the mean and median do
not coincide and are not in the middle of the box, or
when the whiskers are not symmetrical.

Normal probability plots include Q-Q plots and
P-P plots. In Q-Q plots, the quantiles of the variable in
the sample (y) are plotted against the expected
quantiles of normal distribution (x). In P-P plots, the
normal cumulative distribution function of the
standardised variable is plotted against the empirical
cumulative distribution function of the variable. Q-Q
plots highlight non-normality in the tails of the
distribution, whereas P-P plots highlight non-
normality in the central part of the distribution. For
both plots, if the data in the sample come from a
normal distribution, the points on the plot should form
a relatively straight line.

Significance tests provide a significance level that,
if low (typically less than 0.05), indicates a departure
from normality. The departure can be generic
(Kormogorov-Smirnov, Shapiro-Wilk, Shapiro-
Francia, D’Agostino-Pearson, Stephens) or specific
(D’Agostino’s test for skewness, Anscombe-Glynn test
for kurtosis). The results of significance tests for
normality can be affected by the presence of outliers,
which can cause a significant result to be obtained
even if the remainder of the units come from a
population with a normal distribution. The results can
also depend on the sample size: very large samples are
likely to be detected as non-normal even for
unimportant departures from normality, whereas small
samples (less than 10 units) are unlikely to be detected
as non-normal. The Shapiro-Wilk test is the most
frequently used test for normality in common
statistical packages, such as BMDP, Stata, SPSS, and
SAS. It can be performed when the sample size is n ≤
2000. The lower limit depends on the specific
software; although critical values for the Shapiro-Wilk
test have been derived from n ≥ 4, some software
programs require a sample size of at least 7 to perform
the test. Nonetheless, as mentioned, the test is unlikely
to detect non-normal distributions with small sample
sizes, and unfortunately, in animal experiments the
final sample size usually ranges from 5 to 12.
Moreover, the number of final cells can be very large.
As an example of how to detect violations of the
normality assumption using the Shapiro-Wilk test, let
us consider an experiment performed to assess the
effect of different treatments on oedema induced by
carrageen in rats. The treatments consisted of 3
homeopathic remedies, each administered at 2
different dosages, and 1 negative and 1 positive control
treatment, for a total of 8 treatments. The rats were
housed 8 per cage for 7 days from arrival to testing.

The 8 rats in each cage were randomly assigned to the
8 different treatments. At 1, 3, 5, 7, and 24 hours from
carrageen subplantar injection, paw volume was
measured using a plethysmometer and compared to the
paw volume at 0 hours (baseline). All rats in the same
cage remained in the experimental room when their
cagemates were tested. The experiment was replicated
3 times, using 48 rats (6 cages with 8 rats each) for
each replication. The number of final cells was 120 [3
(replications) x 8 (cages) x 5 (repeated measures) =
120], with each final cell consisting of 6 rats.

To detect violations of the normality assumption, a
normality test can be performed on each of the data
subgroups, which, for the above experiment, entails
performing 120 tests (one test for each subgroup, each
of which consists of 6 units). In Table 1, the
significance levels of the 120 Shapiro-Wilk normality
tests are presented. Below are described three different
empirical methods that can be used to summarise these
significance levels.

1) As shown in Table 1, significant results were
obtained for only 6 samples (p value ≤ 0.05)
(significance suggesting that the samples were probably
non-normal). These results were obtained on days 2 and
3 only and for 5 of the 8 different treatments. However,
2 of the 6 significant results were obtained for one
treatment (treatment G), for which there was a
significant non-normal distribution on day 2 at 24 hours
and on day 3 at 5 hours. Four of the 8 p values that were
nearly significant (0.05 < p ≤ 0.10) were also obtained
for treatment G, although the remaining 9 p values for
this treatment were all far from significant (range:
0.4369 to 0.9975). It thus seems that the effect of
treatment G probably did not modify the distribution of
data, which, in the other treatment groups, in nearly all
cases did not deviate from normality.

2) In statistical inference, the p value represents the
probability of a result being equal to or more extreme
than the one obtained in the sample, under the null
hypothesis H0: in other words, the p value represents the
probability of making an error (Type I) in considering
H0 to be false when it is actually true. This implies that,
in repeated testing, H0 being true, approximately 5% of
the tests will be expected to provide a p value of ≤ 0.05
merely by chance. This is exactly what happened in the
example provided. As seen in Table 2, which shows the
frequency distribution of the p values presented in Table
1, the observed cumulative relative frequency of the p
values in the consecutive classes is very close to, if not
identical, the expected one. In particular, the relative
frequency of p values ≤ 0.05 is exactly 5%, suggesting
that chance played a role in determining the observed
significances.

3) The above-described empirical methods do not
solve the problem of insufficient power due to the small
sample size in each final cell, which could explain why
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most of the 120 p values were not significant and,
consequently, why non-significance was found for the
overall sample. To overcome this problem, the sample
size should be increased by collapsing the original data
in the subgroups and performing the normality test on the
overall group of units. If all of the ANOVA assumptions
are respected, then the data in each subgroup will be
distributed normally, with the variance across subgroups
being equal. However, if the factor or factors being
studied are effective, then the subgroups will have
different means. For these reasons, when data are
collapsed without performing a previous transformation,
the resulting overall distribution may be non-normal,
even if all subgroup distributions are normal. In fact, a
mixture  of normal distributions with different means but
equal variance is, in most cases, substantially skewed,
with the extent of skewness depending on the size of the
differences among the means.

To overcome this obstacle, the data in each subgroup
can be centred on the subgroup mean. The residuals in
each subgroup would then have a mean equal to 0 and
unaltered variance and distribution. Therefore, the data
can then be collapsed, which would produce an overall
group of units with a mean of 0 and a normal
distribution, if the original subgroup distributions are all
normal.

In the above example, the original data in the 120
subgroups were centred on the subgroup means and then
collapsed. The Shapiro-Wilk normality test performed
on the overall group of 720 units produced a non-
significant result (W = 0.9840, p = 0.2550), confirming
the substantial normality of the data, as already revealed
by the normality tests performed on the 120 subgroups
(Tables 1 and 2).

To determine the power of the above-mentioned
procedure, simulation studies will need to be conducted.
In fact, no information is available on the capability of
the Shapiro-Wilk test, applied on collapsed data, to
detect non-trivial violations of the normality assumption
(which could affect the results of ANOVA).

Finally, even if all subgroup distributions are normal
but variances are not homogeneous across subgroups,
collapsing the residuals will result in a heavy-tailed
distribution, that is, a distribution with greater than
normal kurtosis. It is thus necessary to determine
whether or not the homoscedasticity assumption has
been respected, as described below.

Homoscedasticity

“Homoscedasticity” refers to the homogeneity of
variance among the independent groups being
compared. In CRD and mixed-model designs,
homoscedasticity must be evaluated by comparing
variances among the groups based on between-subject
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Table 1. - Significance levels of the Shapiro-Wilk
normality test. Significant values (p ≤ 0.05) are indicated
in bold; nearly significant values (0.05 < p ≤ 0.10) are
indicated in bold and italics 

Subgroup p values

Day 1 Day 2 Day 3 

A_t01-t00 0.5498 0.0992 0.4818 

A_t03-t00 0.1694 0.9892 0.5166  

A_t05-t00 0.1848 0.4589 0.7861  

A_t07-t00 0.6367 0.9669 0.8672  

A_t24-t00 0.4289 0.2718 0.2282  

B_t01-t00 0.4299 0.1382 0.6328  

B_t03-t00 0.7622 0.5971 0.9222  

B_t05-t00 0.6193 0.4170 0.3298  

B_t07-t00 0.8094 0.3936 0.3002  

B_t24-t00 0.2423 0.8423 0.3932  

C_t01-t00 0.8875 0.5608 0.6771  

C_t03-t00 0.6728 0.3869 0.8114  

C_t05-t00 0.6644 0.3457 0.7514  

C_t07-t00 0.9774 0.6782 0.8865  

C_t24-t00 0.4571 0.4084 0.7801  

D_t01-t00 0.3714 0.5940 0.9073  

D_t03-t00 0.4757 0.2862 0.6421  

D_t05-t00 0.8250 0.0151 0.9558  

D_t07-t00 0.6040 0.6314 0.7548  

D_t24-t00 0.7497 0.5056 0.1646  

E_t01-t00 0.7400 0.8901 0.2227  

E_t03-t00 0.0976 0.8547 0.0299 

E_t05-t00 0.9843 0.3214 0.0614 

E_t07-t00 0.9691 0.7586 0.9465  

E_t24-t00 0.4832 0.4447 0.3209  

F_t01-t00 0.4451 0.7715 0.0235 

F_t03-t00 0.1402 0.3783 0.1896  

F_t05-t00 0.4138 0.5910 0.0689 

F_t07-t00 0.2744 0.3833 0.2821  

F_t24-t00 0.3725 0.4278 0.9423  

G_t01-t00 0.4369 0.0780 0.6240  

G_t03-t00 0.7849 0.4582 0.0577 

G_t05-t00 0.9975 0.5526 0.0498 

G_t07-t00 0.5948 0.0805 0.0664 

G_t24-t00 0.8405 0.0187 0.5858  

H_t01-t00 0.9194 0.5804 0.9195  

H_t03-t00 0.9906 0.2504 0.7188  

H_t05-t00 0.6783 0.1219 0.4589  

H_t07-t00 0.2486 0.1942 0.1890  

H_t24-t00 0.9563 0.4297 0.0283 
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factor levels. In mixed-model designs, the data in each
block (corresponding to within-subject factor levels) or
in each unit (corresponding to repeated measures)
should first be averaged, so as to reduce the mixed-
model design to a CRD. Homoscedasticity can then be
verified using boxplots and significance tests.

As mentioned, boxplots summarise the distribution
of a set of data. If boxplots corresponding to the
independent subgroups are graphed side-by-side, the
differences in their dimensions or in the length of their
whiskers and the presence of outliers in some boxplots
but not others can reveal heteroscedasticity.

Significance tests provide a significance level that, if
low (typically less than 0.05), indicates a departure from
homoscedasticity. The most frequently used tests for
assessing homoscedasticity are Bartlett’s test and
Levene’s test, which are also commonly provided in
statistical packages. Bartlett’s test is more sensitive than
ANOVA itself to violations of the normality assumption
and thus should not be used to verify the homoscedas-
ticity assumption for ANOVA, unless normality has
been demonstrated, in which case Bartlett’s test would
be more powerful than other tests. Levene’s test consists
of performing ANOVA (according to the same model
used for analysing the original data) on the absolute
deviations of each original data from its cell mean (or
median, in later proposed versions of the test). It is much
more robust than Bartlett’s test yet should be applied
with caution when the sample sizes are small.

In the example, the data were blocked by day and
cage to take into account the possible effects of the day
of testing (replication) and the housing cage. Each final
cell (derived from combinations of replication, cage,
and treatment) consisted of only one animal; thus, in the
full model analysis, it was not possible to evaluate

homoscedasticity. However, when disregarding day and
cage, the final cells based on treatment levels consisted
of 18 animals each. The Levene’s test, performed to
compare variances among the 8 treatment groups, both
on the mean of the repeated measures and on each
repeated measure, was never significant, confirming
that there was substantial homoscedasticity among the
groups (Table 3).

Sphericity

When using the parametric ANOVA in RBD or
mixed-model designs, the F statistic which tests the
significance of the main effect of the within-subject
factor (or repeated-measure factor) and its interactions
with other factors in the model, no longer follows the
theoretical F distribution but is instead positively
distorted. This means that the results of ANOVA may be
significant more frequently than they should be
(increase in the probability of a Type I error). Such a
distortion does not affect the ANOVA results if the
variance-covariance matrix of the data follows the
sphericity pattern, which indicates that the sphericity
assumption is respected. The sphericity assumption
corresponds to the homoscedasticity assumption for
CRD. Specifically, when calculating the differences
between paired observations in the RBD, the sphericity
assumption states that the variances of these differences
(i.e., the σd

2 in a paired t-test) are equal across all groups
in the sampled population.

A simpler yet stricter condition is that referred to as
“compound symmetry”, which is met when, in the
variance-covariance matrix of the sampled population,
both all of the variances and all of the covariances are
equal, although the covariances are not necessarily
equal to the variances. This means that the data collected
on statistical units under different conditions
(corresponding to different levels of the within-subject
factor or to different repeated measures) must be equally
related to each other with the same correlation
coefficient ρ. Compound symmetry is sufficient, yet not
necessary, for ensuring the validity of the F ratio under
the general null hypothesis of no treatment effect. In
other words, if compound symmetry is satisfied, then
sphericity is also satisfied, but if compound symmetry is
not satisfied, then sphericity must still be evaluated.

Although the Mauchly’s test, which is a chi-square
test, can be used to assess the sphericity assumption, it
results in too many Type II errors when sample sizes are
small (i.e., it does not detect sphericity violations) and
too many Type I errors when sample sizes are large
(i.e., producing significant results even for small and
unimportant violations). Other approaches that can be
used to address violations of the sphericity assumption
are: a correction in standard ANOVA, and the
multivariate analysis of variance (MANOVA).
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Table 2. - Frequency distribution of the p values of the
120 Shapiro-Wilk normality tests

Interval p values  

Absolute Cumulative Cumulative 
frequency absolute relative

frequency frequency

0.00 ≤ p ≤ 0.05 6 6 0.0500  

0.05 < p ≤ 0.10 8 14 0.1167  

0.10 < p ≤ 0.20 9 23 0.1917  

0.20 < p ≤ 0.30 9 32 0.2667  

0.30 < p ≤ 0.40 12 44 0.3667  

0.40 < p ≤ 0.50 17 61 0.5083  

0.50 < p ≤ 0.60 11 72 0.6000  

0.60 < p ≤ 0.70 12 84 0.7000  

0.70 < p ≤ 0.80 11 95 0.7917  

0.80 < p ≤ 0.90 10 105 0.8750  

0.90 < p ≤ 1.00 15 120 1.0000  



Correction in standard ANOVA

As mentioned, a violation of the sphericity
assumption produces a positive distortion of the F test,
so that the significance level of the F statistic is higher
than it should be. To reduce the significance level, it
would be necessary to reduce the F statistic. However,
the significance level can be more simply reduced by
reducing the associated degrees of freedom, with the
extent of the reduction depending on the extent of the
sphericity violation.

The most frequently used corrections for the degrees
of freedom are those developed by Greenhouse and
Geisser and by Huynh and Feldt. In both cases, a
coefficient denoted by “ε” must be calculated. The
upper bound for ε is 1, in case of perfect sphericity,
whereas the lower bound is 1/(k-1), where k is the
number of levels of the within-subject factor (or of the
repeated measures): the worse the sphericity violation,
the smaller the value of ε.

The Greenhouse-Geisser correction is more
conservative than the Huynh-Feldt correction. The
choice of the most appropriate correction depends on the
relative importance of Type I and Type II errors in the
experiment (in terms of cost, effects, and
consequences). If Type I error is more important, then
the Greenhouse-Geisser correction is preferable,
whereas the Huynh-Feldt correction should be used if
Type II error is more important.

A correction in standard ANOVA seems to work
well for modest violations of the assumption, or when
the sample size is small.

Multivariate analysis of variance (MANOVA)

MANOVA is a parametric method developed to test
the difference among groups with respect to more than
one outcome variable. The different observations made
on each statistical unit in RBD can be treated as different

outcome variables and analysed by MANOVA. In
general, MANOVA is less powerful than repeated-
measure ANOVA, even when applying corrections for
the degrees of freedom, and thus should be avoided.
MANOVA should instead be used when marked
violations of the sphericity assumption can be
hypothesised (ε < 0.70) and the sample size is
sufficiently large (n > 10 + k).

In summary, to determine whether the sphericity
assumption is violated and which method must be
applied (correction for degrees of freedom or
MANOVA), the significance levels obtained using
standard ANOVA, corrected ANOVA, and MANOVA
can be compared. If these levels are fairly similar, then
any of the methods can be used, whereas if the
differences are large, then the corrected ANOVA or
MANOVA must be used, depending on the extent of
violation, the sample size, and the relative importance of
Type I and Type II errors.

Conclusions

Parametric ANOVA provides accurate results if the
assumptions on which the analysis is based (normality,
homoscedasticity, sphericity) are respected, whereas
violations in these assumptions can be damaging, with
the degree of damage depending on the type and extent
of the violation and the sample size. Thus the
assumptions must be evaluated before drawing any
conclusion based on the results of ANOVA. Descriptive
statistics, diagnostic plots, or significance tests can be
used, depending on the available software, the complexity
of the experimental design, and the sample size.

Normality must be evaluated in each final cell of the
experimental design. The significance levels of
normality tests (most commonly the Shapiro-Wilk test)
can be listed in increasing order and their cumulative
frequency can be determined. Quantiles can then be
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Table 3. - Standard deviations for the 8 treatment groups and Levene�s test results (n = 18 in each treatment group)

Variate  Standard deviation of treatment group Results of 
Levene�s test

A B C D E F G H F 
(7,136)   p value 

Mean(*) 7.203 10.359 9.684 11.642 15.955 12.974 15.147 13.643 1.42 0.2026  
t01-t00 13.516 11.198 11.403 12.285 17.271 15.403 16.313 16.723 0.65 0.7119  
t03-t00 14.770 11.220 11.399 18.563 19.218 18.098 22.560 16.421 1.23 0.2909 
t05-t00 10.260 19.590 16.732 18.230 19.491 16.180 20.536 18.348 1.18 0.3167  
t07-t00 10.429 14.933 13.469 17.164 20.719 20.111 17.972 15.839 1.42 0.2012  
t24-t00 7.461 10.205 10.496 10.331 15.217 10.733 12.935 12.911 1.34 0.2345  

(*) The mean represents the average of differences between paw volume at time 0 (baseline) and at 1, 3, 5, 7, and 24 hours,
calculated for each rat.
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compared with the expected quantiles under the null
hypothesis of the normality of the distribution in the
sampled population. Moreover, when the sample size in
the final cells is small, the information provided by the
separate tests should be summarised. To this end, the
data in each final cell can be centred on the cell’s mean
and the normality test can be performed on the overall
group of centred data.

Homoscedasticity must be evaluated by comparing
variances in the groups based on between-subject factor
levels. In the case of mixed-model designs, data on each
block (corresponding to within-subject factor levels) or
on each unit (corresponding to repeated measures) must
first be averaged, so as to reduce the mixed-model
design to a CRD. The most frequently used significance
test is the Levene’s test, which is available in most
statistical packages.

Finally, sphericity must be evaluated when using the
parametric ANOVA in RBD or mixed-model designs.
To do so, it is suggested that standard ANOVA, the
Greenhouse-Geisser or Huynh-Feldt ANOVA
correction, or MANOVA be used. If the significance
levels are fairly similar, any of these methods can be
used, whereas if there is a large discrepancy, the
corrected ANOVA or MANOVA must be used, the
choice depending on the extent of violation, on the
sample size, and on the relative importance of Type I
and Type II errors. The Greenhouse-Geisser and Huynh-
Feldt corrections are usually simpler to use and easier to
interpret than MANOVA, and they are available in most
statistical packages.

In conclusion, if one or more assumptions are
violated, then parametric ANOVA performed on raw
data is not the best method of statistical analysis, and
other approaches must be followed. Specifically, the
data can be transformed so as to meet the assumptions
of the parametric tests, or statistical methods that do not
rely on such stringent assumptions, such as non-
parametric tests, can be adopted. Although beyond the
scope of this paper, indications regarding the most
important non-parametric tests in experimental designs
can be found in the textbooks listed as recommended
reading below.
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