
Introduction and motivations

In planning human and animal studies on the
relative effectiveness of a novel treatment, compared
to an established treatment, several statistical issues
need to be addressed. Two important basic issues are
the number of statistical units and their allocation to
the treatment groups (e.g., treatment and control).
Properly addressing these issues allows the units to be
used as efficiently as possible, which can contribute to
reducing the number of subjects necessary for
performing an experiment. To do so, reliable
information on both the novel treatment and the
control treatment, which generally consists of
historical information from previous studies, must be
available. This information can contribute not only to
reducing the overall size of an experiment but also to

efficiently allocating the experimental units, with more
individuals assigned to the novel treatment, for which
it is assumed that less information is available.

Historical information can be formalised and
incorporated into an analysis by adopting the Bayesian
approach. For instance, in comparing two unknown
parameters (θ1 and θ2) that represent the mean
effectiveness of two treatments, formalising the
information on these quantities through probability
distributions has two immediate advantages. The first
advantage is practical: assigning a prior distribution to
the unknown quantities allows different plausible
scenarios to be taken into consideration. Technically
speaking, this allows local optimality to be avoided
(see examples below). Moreover, in allocating units,
the Bayesian approach allows for the use of flexible
rules, which reflect the actual knowledge on the
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phenomenon before performing the experiment. The
second main advantage to the Bayesian approach is
that it addresses additional unknown quantities that are
not of direct scientific interest (i.e., “nuisance
parameters”), such as the parameters that measure the
variability of the data. These points are illustrated in
the examples below.

Example 1. - Suppose that we are interested in
evaluating the relative effectiveness of a novel
treatment, compared to a standard treatment. If
formalising the problem as an interval estimation of
the difference in the means of independent normal
random variables with equal unknown variances, σ2 ,
it can be easily determined that the width of the 1-α
confidence interval based on two independent samples
of sizes  n1 and  n2 (see, for instance, [1]) is

where S is the pooled standard deviation, n = n1 + n2,
and tn-2;1-α2 is the 1 - α

2
percentile of the Student

distribution with n - 2 degrees of freedom. Note that in
planning the analysis (i.e., when the data are yet to be
obtained), the above quantity depends on the random
variable S. To determine n1 and n2, the standard
procedure (see, for example, [2]) is to require the
expected width of the random interval to be less than a
chosen threshold, l. However, since the expected value
of S depends on the unknown value of σ, a guess value
of this nuisance parameter must be chosen to select
values for n1 and n2.

Example 2. - Suppose that we are interested in
comparing two probabilities, the unknown parameters
of two independent binomial distributions. Let θ1 and
θ2 denote these unknown parameters, with the former
referring to the established treatment and the latter
referring to the novel treatment. In particular, suppose
that we want to estimate the unknown log-odds-ratio

using the standard 1 - α confidence interval
based on two independent samples whose sizes are
indicated by n1 and n2 . Suppose also that the objective
is that of selecting the size of the sample so as to have
a narrow interval. The most commonly used
frequentist approach [3] is to choose the minimal
sample size so that the width of the confidence interval
is no greater than l. Since the interval’s width depends
on the unknown parameters (θ1, θ2), the criterion
requires preliminary estimates θ~1, θ~2 . Denoting with
z1-α2

the 1 - α
2

percentile of the standard normal
distribution, the resulting total sample size, n = n1 + n2,
is

where the optimal proportion of cases

is obtained minimising the asymptotic variance of the
maximum likelihood estimator (see [4]). If the observed
proportions match the initial estimates  (θ~ 1, θ~ 2), then
the width of the confidence interval would be l.
Clearly, inaccurate preliminary estimates could lead to
excessively wide confidence intervals, which is the
typical “local optimality” problem of procedures for
determining the standard sample size. 

The above two examples reveal that, even in the
simplest settings, the standard procedures for
determining the sample size are only locally optimal.
In the following sections, the Bayesian approach to
determining the sample size is outlined, and the use of
historical information to model uncertainty regarding
the unknown parameters is demonstrated (see Example
3). The paper is organised as follows. In the following
section, the Bayesian approach to determining sample
size is described, and the criteria cited throughout the
paper are introduced, distinguishing between
estimation criteria and testing criteria. Then we focus
on the problem of allocating units. Finally, the
proposed criteria are applied to the standard problem
of comparing normal means and to determining
sample size for inference in binomial experiments.

Bayesian criteria for determining sample size
and allocating units

We consider experiments in which two treatments
are compared by observing two independent samples,
Xn1 and Xn2. Denoting with ƒ(.| θj ) the density function
of Xnj (j = 1,2 ), the posterior density of parameter θj

relative to the observed sample xnj is

(1)

where π is the prior density of θj and

(2)

is the predictive density of xnj. If nuisance parameters
are present, the posterior density of the parameter of
interest can be obtained by integrating the joint posterior
distribution.

In this paper, we discuss how to determine the size
of the two samples, n1 and n2, for inference on a
parameter δ = δ(θ1, θ2) , a function of the parameters of
the two sampling distributions. The underlying
concept in determining the sample size is that, before
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ACCOUNTING FOR HISTORICAL INFORMATION IN DESIGNING EXPERIMENTS: THE BAYESIAN APPROACH

performing the experiment that will yield the data, we
want to choose the minimal sample size that satisfies a
selected criterion. Thus, unlike standard Bayesian
posterior analysis, the randomness of the data must be
taken into account. Specifically, all of the posterior
quantities considered are random, given that they are a
function of Xn1 and Xn2, which are independent
random variables, with the distribution of each
obtained with (2). In comparative trials, determining the
sample size is a two-fold problem, that is, it is necessary
to choose both the total size, n, and the number of
individuals allocated to the two treatment groups (n1 and
n2). In the following subsections, we address these
issues for both estimation problems and hypothesis
testing (for additional reading on the Bayesian approach
to the issue of sample size, see [5-8]).

Criteria for estimation problems

For a given sample (Xn1 = xn1, Xn2 = xn2) the two
most common Bayesian interval estimates for the
parameter of interest are equal-tails intervals and
highest posterior density sets (HPD). The 1 - α level
equal-tails interval has as its endpoints the α

2
and 1 - α

2

quantiles of the posterior distribution. The 1 - α level
HPD set is the subset of the parameter space with the
highest posterior density and a posterior probability
greater than or equal to 1 - α . Each of these estimates
has advantages and disadvantages to its use. For
instance, HPD sets have the shortest length of all of the
sets of level 1 - α , yet they are not invariant under
parametric transformation and are computationally
difficult to derive. Equal-tails intervals are easy to
derive, yet they are not of minimal width. Below, we
focus on equal-tails intervals, given that they are easier
to derive than HPD sets and are more commonly used.
Furthermore, for larger samples, the posterior
distribution is often approximately normal, hence equal-
tails intervals coincide with HPD and are thus optimal.

To determine the sample size, based on the
features of the interval estimates of the parameter of
interest, two criteria are considered: Average Length
Criterion (ALC) [9] and Length Probability Criterion
(LPC) [9, 10].

Denoting with L(Xn1, Xn2) the random width of the
Bayesian 1 - α  level interval estimate of δ, when using
ALC one looks for the smallest sample size so that the
expected width of the interval is not greater than a
chosen threshold, l

(3)

the expectation being with respect to the joint
predictive distribution of (Xn1, Xn2) obtained from (2).
The rationale behind ALC is that of avoiding wide
interval estimates, which are uninformative. However,

ALC does not control the sampling variability in the
random width of the intervals. To take variability into
account, LPC can be used: the smallest sample size is
selected so that the probability of having an estimated
interval whose width is greater than or equal to a given
threshold, l, is limited by a chosen level, γ ∈ (0,1):

(4)

A criterion for hypothesis testing

For testing two alternative hypotheses,

we propose selecting the sample size using the
criterion proposed by Verdinelli [11] and related to
criteria introduced by Weiss [12] in the Bayesian
framework (see also Royall [13], who has developed a
theory of statistical evidence based on the likelihood
function). The basic idea is that data are collected to
produce substantial evidence in favour of either H0 or
H1. Unless a formal decision theoretic approach is
adopted, in the Bayesian scenario, one of the two
hypotheses is selected based on their posterior
probabilities

where π (δ | xn1, xn2) is the posterior density of  δ . If
where  ρ∈ (1

2
, 1)  is a chosen

probability level, then there is strong evidence in
favour of Hj, whereas if
neither H0 nor H1 are strongly supported by the
observed data. The criterion for choosing the sample
size thus consists of considering the smallest size such
that the probability that neither H0 nor H1 are strongly
supported is less than a certain threshold, γ . Therefore,
we choose the smallest sample size such that

(5)

Allocation of units

In sample size problems, ALC, LPC and the above-
described test criterion each provides a condition
sufficient for determining sample size. However, the
problem considered here also requires choosing the
number of units to be assigned to each treatment (n1
and n2). Since conditions (3), (4), and (5) for
determining sample size depend on both n1 and n2, the
criteria must be integrated to obtain a single value for
each of the two sample sizes.
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For each possible total sample size, n, the optimal
allocation (n1, n2) is that which minimises the
probability (4) of having a wide interval estimate or, if
the test criterion is adopted, the probability (5) of not
having substantial evidence in favour of either
hypothesis. As demonstrated in Section 3, this criterion
can be used, for instance, for the normal model with
conjugate prior distribution. Nonetheless, in the
general case, such an allocation may not exist, or it
could be computationally intensive.

When prior information on one of the two
treatments is more accurate than the information on the
other treatment, it may be a good idea to use the
following alternative allocation rule: choose n1 and  n2
so that the posterior uncertainty regarding the
parameters in the two populations is approximately
equal. This usually results in fewer units being
assigned to the better known treatment. A means of
imposing equal posterior uncertainty is that of
requiring the expectation of the posterior variances of
θ1 and θ2 to be equal. Thus, for a given total size n, one
can choose n1 as the solution to the following equation
(as n1 varies in {1,...,n -1})

(6)

If the root of equation (6) is not an integer, choose
n1∈ {1,..., n -1} so that the left-hand-side and the right-
hand-side are as close as possible.

The following section focuses on situations in
which the expected posterior variance has a closed
form, thus allowing the allocation criterion (6) to be
easily adopted.

Two relevant problems

Choosing the sample size for normal and binomial
experiments is an important starting point for gaining
insight into more complex cases and different models.

Difference of normal means

Suppose that the effect of each treatment on the units
can be modelled as a normal random variable. Hence,
each sample Xn1 (j = 1,2) is drawn from a normal
distribution with an unknown mean µ1 and unknown
precision λ = σ -2 (the precision is supposed to be the
same for the two samples). We consider the usual
conjugate prior for the parameters (µ1, µ2, λ) a gamma
distribution with fixed parameters (ν, β)  for the precision
λ and, conditionally on λ, a normal distribution for each
mean µj with prior mean µ0j and precision n0jλ . Using,
as in Bernardo and Smith [14],  N(. | µ, λ)  and Ga(. | ν, β)
to denote normal and gamma density, respectively, the
joint prior for the three parameters is

The parameter of interest here is δ = µ1 - µ2. The
above prior assumptions are equivalent to assigning

The posterior distribution of δ is known (see, for
instance, [14]). De Santis and Perone Pacifico [10]
provide the quantities needed to choose the sample size
according to ALC and LPC

where Be(. | ν, n
2
) is the Beta density with parameters

(ν, n
2
) and

Note that the distribution and expectation of
L(Xn1 and Xn2) do not depend on the prior means µ01

and µ02. Moreover, it is easy to verify that the
probability in (4) depends on the allocation of n in n1

and  n2 based only on the quantity k. Since k is minimal
when  n1 + n01 = n2 + n02, choosing

results in the optimal allocation of units to the
treatments. Since n0j is usually interpreted as the
strength of prior information on µj, then nj + n0j can
be considered as the amount of posterior information
on the same parameter. Hence the allocation that
requires n1 + n01 = n2 + n02 in some sense tends to
balance the uncertainty regarding the two treatments.

Taking into account the above constraints, the
criteria in (3) and (4) depend on the total size n only. 

One can easily use LPC (or ALC) by computing  
) for several

values of n.
Regarding the impact of the strength of prior

information on the above criteria, it can be shown that,
for any fixed value of α and of  γ (for LPC), the “prior”
sample size and the sample size of the new experiment
play a concurring role: the stronger the prior
information (i.e., the larger n01 + n02), the smaller the
number of new observations needed to satisfy either
ALC or LPC. Therefore, the more accurate the prior
information, the lower the number of experimental
units necessary for a new study.
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ACCOUNTING FOR HISTORICAL INFORMATION IN DESIGNING EXPERIMENTS: THE BAYESIAN APPROACH

Let us now turn to the test criterion and consider
the following one-sided testing problem:

Assume, for simplicity, that the sampling precision,
λ, is known and that

where δ0 is the value that separates the null and the
alternative hypotheses. Under the above assumptions

(7)

where zα and Φ(α) are, respectively, the α
percentile and the cumulative distribution function of
the standard normal, Π0 is the prior probability of the
null hypothesis and where

The probability (7) does not depend on λ and is a
decreasing function of the quantity ξ(n1, n2), which
measures the relative strength of the prior information
compared to the experimental information (for
instance,  if n1 = n2 = n/2  and  n01 = n02 = n0/2 , then   

Therefore, when using the test criterion, the “prior”
sample size and the sample size of the new experiment
play a contrasting role: to achieve a certain level in the
predictive probability of obtaining weak evidence, the
smaller the prior sample size, the smaller the number
of new units required. This is of course in contrast with
what has been seen for ALC and LPC. This has to do
with the fact that, in the testing criterion, the effect of
the observations is two-fold: they contribute both to
reducing posterior variance and shifting the posterior
distribution of the parameter away from the prior
mean. Therefore, the smaller the prior precision, the
smaller the number of new observations needed to shift
the posterior distribution and to provide decisive
evidence in favour of either the null or the alternative
hypothesis.

Two comments are in order. First, note that the
above results can be easily extended by considering for
δ a prior mean different from δ0, yet obtaining closed-
form formulas for the probability of weak evidence.
Second, more realistic situations in which analytical
results are not available (unknown sampling precision,
non-conjugate priors) can be easily addressed by
resorting to a simulation scheme to approximate the
probabilities of obtaining weak evidence. For details,
see De Santis [15].

Binomial experiments

Suppose now that the response to the treatment of
each unit is binary (e.g., positive or negative); thus
Xnj denotes the number of positive responses among
the nj units assigned to treatment j (with j = 0,1). Under
independence assumptions, the two samples Xn1 and
have Xn2 independent binomial distributions with
parameters (n1,θ1) and (n2,θ2), respectively. The two
unknown parameters  θ1 and θ2 denote the probability
of success of each treatment. The parameter of interest
is a function δ = δ (θ1, θ2) often the odds-ratio
or its logarithmic transformation.

We consider the conjugate priors for the unknown
parameters θ1 and θ2 to be independent and thus
assume that each θj has a beta distribution as a beta
with fixed hyperparameters (αj, βj); the corresponding
posterior density of θj relative to the observed value
xnj is still beta with parameters (αj + xnj, βj + nj - xnj).
Prior independence implies posterior independence of
θ1 and θ2 as well as independence of the predictive
distribution of Xn1 and Xn2. From standard conjugate
analysis (see, for instance, [14]) it follows that the
predictive distribution of Xnj is binomial-beta with
parameters (αj, βj, nj):

(8)

where B  denotes the standard beta function. Under
these assumptions, the expected posterior variance of
θj is

(9)

In addition to computational convenience, there are
several other reasons for considering beta prior
distributions for the unknown parameters. First of all,
the class of beta priors is often rich enough to represent
a wide range of pre-experimental information on the
unknown proportions θ1 and θ2. Moreover, in our
problem, it is only necessary to specify the hyperpara-
meters (αj, βj), which can be interpreted in a straight-
forward manner, as shown in Example 3.

Although we assume prior independence
essentially to simplify computations, there may be
other justifications for doing so. For example, as
pointed out by Joseph, du Berger, and Belisle [16],
when the optimal sample size selected using
independent priors is relatively large with respect to
the weight of prior information, switching to
dependent priors does not have a strong impact and
the priors are expected to have a limited effect on the
analysis; however, for small or moderate sample
sizes, Bayesian criteria are significantly affected by
prior dependence. The sensitivity of the optimal
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sample size to prior assumptions is an important
issue, and we plan to elaborate on it in future studies.

In choosing the sample size according to LPC, the
sampling distribution of L(Xn1, Xn2) needs to be
evaluated, given that the two samples vary in range
according to their independent binomial-beta
distributions. To determine whether or not a candidate
value n satisfies (4), the following steps are used:

i) using allocation criterion (6), compute, for j = 1,2,
the expected posterior variances (9) and choose n1 that
minimises their absolute difference, let n2 = n - n1;

ii) compute L(xn1, xn2), for all xn1 = 0,...,n1 and
xn2 = 0,...,n2 ;

iii) select all the pairs (xn1, xn2) such that L(xn1,
xn2) ≤ l and compute their probabilities mn1 (xn1) 

. mn2

(xn2) using (8); if the sum of the probabilities is not
greater than γ, then n satisfies (4).

Computing L(xn1, xn2) in step (ii) may be time
consuming. When the parameter of interest is the
logarithm of the odds-ratio and the two sample sizes
are reasonably high, one can use the normal
approximation to the posterior distribution of δ, as in
De Santis, Perone Pacifico and Sambucini [17]. For
more general cases, when an analytic expression for
L(xn1, xn2) is not available, for each given pair (xn1, xn2)
the equal-tails set can be obtained numerically as
follows:

a) generate a large sample from the joint posterior
distribution of (θ1, θ2);

b) compute the corresponding values of δ(θ1, θ2);
c) order the sample of  δ’s and discard a fraction of

α/2 values on each side;
d) the equal-tails set is the interval containing all

the retained values in the sample of δ’s.
Test criterion (5) can be implemented with a similar

procedure, computing the quantity
instead of L(xn1, xn2) in step (ii).

Example 3. - This example was taken from De
Santis, Perone Pacifico and Sambucini [17] (Section
5), where data from a previous case-control study were
used to choose the sample size for a new experiment.
Although referring to a different context, the example
provides an idea of the difference between the
frequentist and the Bayesian approaches to
determining sample size in binomial experiments.

Denoting with ~xnj and  ~nj the corresponding values,
in the previous experiment, of the quantities xnj and nj,
the historical data used to fix the prior parameters αj
and βj are

(10)

Following the standard elicitation techniques in
conjugate analysis described in Bernardo and Smith
[14], for the binomial model,  αj /(αj + βj) should be
chosen as the prior estimate of θj and αj + βj as the
strength of the prior information on θj (number of

observations to which the prior information is con-
sidered equivalent). Relying on the historical data (10),

provides the prior estimate of the proportions θj.
Regarding the strength of the prior information, the
same proportion between the two groups has been kept
and, as an example, a total strength ~s = 60  observations
has been considered, so that

The resulting values of the hyperparameters are
given by the total strength times the corresponding
relative frequencies in the contingency table

LPC has been implemented using the numerical
procedure described above with l = 1.5 and γ = 0.05
and considering the normal approximation to the
density of the log-odds-ratio. The minimal sample size
that ensures P[LXn1,Xn2) ≥ 1.5] ≤ 0.05 is (n1 = 188, n2
= 271). The frequentist procedure reported in Example
2, with the same desired width l = 1.5 and the same prior
information given in (10), requires (n1 = 132, n2 = 114).

Unlike the results obtained using LPC, the
frequentist procedure requires that there be more
observations for Population 1 than for Population 2,
given that this procedure is only based on the
proportion of positive responses in the two groups,
whereas the Bayesian approach also takes into account
the total amount of information regarding each group
(~n1, ~n2). Since (~n1 = 741, ~n2 = 404) prior information
on Population 1 is more accurate; thus LPC tends to
balance such information, requiring a higher number
of new observations for Population 2.

Table 1 shows the behaviour of the LPC sample
size as the strength of prior information increases from
30 to 90.

Whereas the frequentist optimal proportion and
total size are not affected by the choice of the prior
strength, with LPC the difference between the prior
information on the two groups increases. Hence an
increasing proportion of subjects from Population 2
is needed. Moreover, an increase in prior strength
from 30 to 90 corresponds to a strong decrease in the
sample size needed to satisfy LPC. Thus when using
the Bayesian criterion, it is crucial to establish the
reliability of the data set used for prior elicitation.
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It should be mentioned that the frequentist
procedure, although requiring a lower number of
observations, could fail to prevent wide confidence
intervals from being obtained: if the true proportions
(θ1, θ2) differ significantly from their preliminary
estimates (θ~1, θ

~
2), the resulting confidence interval could

be quite wide. LPC does not suffer from this
inconvenience, since it takes into account the variability
of prior estimates. In particular, the frequentist optimal
total sample size could be obtained through LPC with
accurate prior information (S

~
large): in fact, increasing

the total strength corresponds to concentrating the prior
distribution of (θ1, θ2)  on its mean  (θ~1, θ

~
2)  and thus to

increasingly relying on the initial guess. 
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