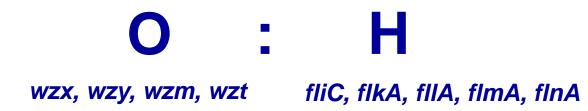
Basic characterization: Serotyping, 7-genes Multi Locus Sequence Typing (MLST) and Virulotyping

Federica Gigliucci


Bioinformatics course, 11-12 July 2019

Serotyping

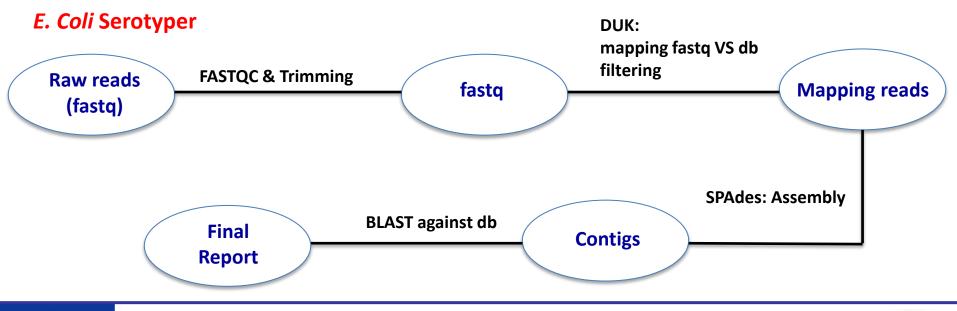
Serotyping, the 1st level of strain characterization

Strong evolutionary marker, it consents immediate detection of clinically relevant pathogens

NGS era! Alignment (mapping or BLASTn) of genomic sequences VS database of reference genes sequences Joensen et al. JCM 2015

🗧 Galaxy / ARIES

E coli Serotyper Overview


This tool performs various operations:

- Optionally: Quality assessment (FastQC)
- Optionally: Trimming (FASTQ positional and quality trimming)
- Optionally: Filtering (DUK)
- · Optionally: Assembly (SPAdes)
- · Serotyping (Blast+ against serotype databases from the Center for Genomic Epidemiology CGE)

Istituto Superiore di Sanità

European Union Reference Laboratory (EU-RL) for Escherichia coli, including Verotoxigenic E. coli (VTEC)

Developer: Arnold Knijn arnold.knijn@iss.it

Serotyping - ARIES

Summary

O26:H11

Raw data quality check

FASTQC result forward: Webpage

FASTQC result reverse: Webpage

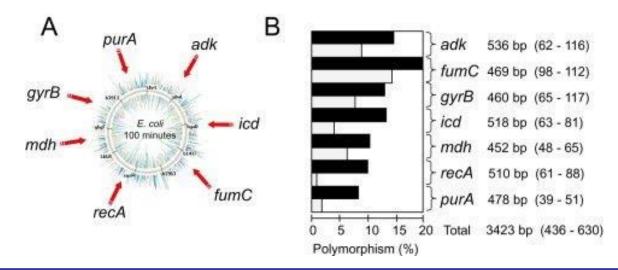
Best serotype match

FASTQC report, if the data analysed don't achieve minimum quality parmeters O?:H11, O26:H?, O?:H? (recommended repeating the sequencing)

Serotyping

sseqid	pident	length	positive
wzy_192_AF529080_O26	100.00	1023	1023
wzx_208_AF529080_026	99.92	1263	1262
fliC_269_AY337465_H11	99.93	1459	1458
fliC_276_AY337472_H11	99.79	1459	1456

Choosing the best allele matching for each gene found (95% identity and with alignment length >800 bp)

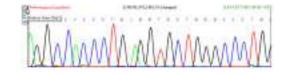

7-genes Multi Locus Sequence Typing (MLST)

Sequence Type (ST), the 2nd level of strain characterization

Deeper discriminant power in case of outbreak investigation

MLST : Molecular typing of 7 house-keeping genes defines the ST of bacterial strains

E. coli MLST scheme, by T. Wirth et al., Mol Microbiol 2006

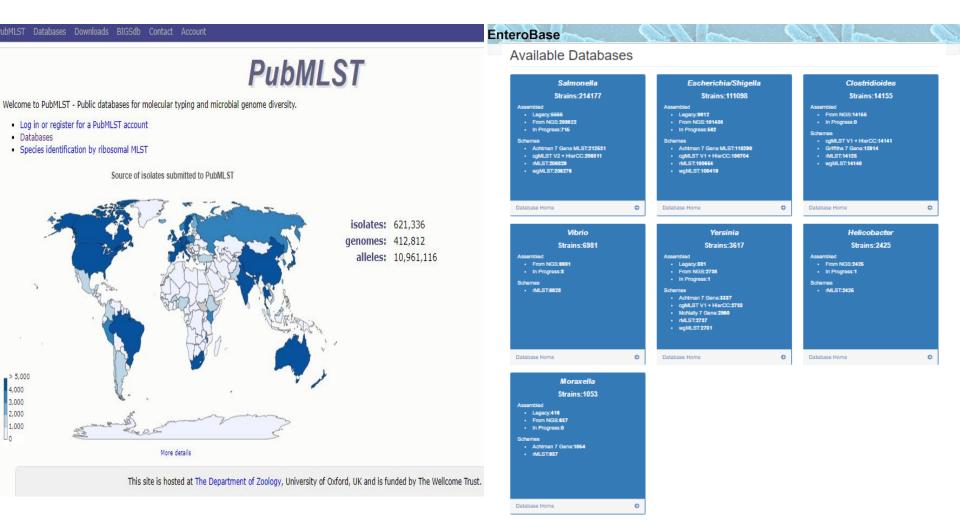

7-genes Multi Locus Sequence Typing (MLST)

Old era conventional Sanger sequencing

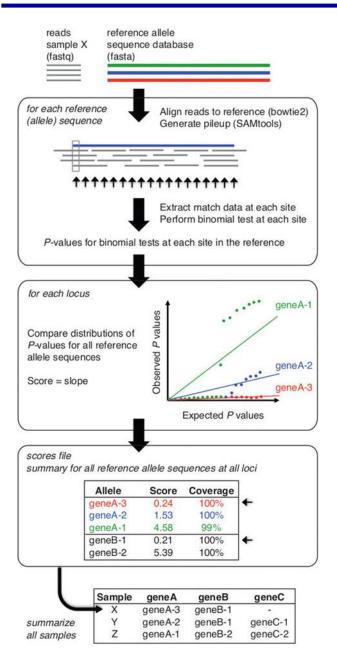
NGS era

PCR, sequencing, electropherograms analysis

Direct upload of WGS contigs on a webserver (e.g. ARIES)



Uploading sequences on a webserver to obtain the corresponding alleles and STs Alleles are directly retrieved through blastn comparison with pre-installed database of alleles from University of Warwick with pre-compiled pipelines



Public databases hosting MLST schemes

SRST2

Read mapping-based tool, It derives the ST from reads

•Reads are aligned to all reference sequences present in the db (using bowtie2) and each alignment processed (using SAMtools).

•Statistical analysis: to determine which of all known reference alleles is most likely present at a given locus, **the P value distributions for known alleles are compared**. The slope of the fitted line is calculated and taken as the score for that allele.

•For each locus, the allele with the lowest score is accepted as the closest matching allele (small arrows) and reported in the output table.

Inouye M et al., Genome Medicine 2014 6:90

SRST2, output

Inouye M et al., Genome Medicine 2014 6:90

1	2	3	4	5	6	7	8	9	10	11	12	13
Sample	ST	adk	fumC	gyrB	icd	mdh	purA	recA	mismatches	uncertainty	depth	maxMAF
readsall	17	6	4	3	17	7	7	6	0	-	139.33	0.141242937853

* indicates mismatches

? indicates uncertainty due to low depth in some parts of the gene

- indicates the gene was not detected (--min_coverage 90)

Depth coverage as indicator of the sequencing quality

MLST

- T. Seemann, 2016. mlst Github <u>https://github.com/tseemann/mlst</u>
- It scans contig files against traditional PubMLST typing schemes

Available PubMLST schemes

abaumannii abaumannii_2 achromobacter aeromonas aphagocytophilum arcobacter bbacilliformis bcc bcereus bhampsonii bhenselae bhyodysenteriae bintermedia blicheniformis bordetella borrelia bpilosicoli bpseudomallei brachuspira	cdiphtheriae cfetus cfreundii chelveticus chlamydiales chyointestinalis cinsulaenigrae clanienae clari cmaltaromaticum cronobacter csepticum	ecloacae ecoli ecoli_2 edwardsiella efaecalis efaecium fpsychrophilum ganatis hcinaedi hinfluenzae hparasuis hpylori hsuis kaerogenes kkingae koxytoca kpneumoniae leptospira entospira 2	Imonocytogenes Isalivarius mabscessus magalactiae mbovis mcanis mcaseolyticus mcatarrhalis mhaemolytica mhyopneumoniae mhyorhinis miowae mmassiliense mplutonius mpneumoniae msynoviae mycobacteria neisseria orchinotrachaala	psalmonis ranatipestifer rhodococcus sagalactiae saureus sbsec scanis sdysgalactiae	sgallolyticus shaemolyticus shominis sinorhizobium slugdunensis smaltophilia soralis spneumoniae spseudintermedius spyogenes ssuis sthermophilus sthermophilus_2 streptomyces suberis szooepidemicus taylorella tenacibaculum	vcholerae vcholerae2 vibrio vparahaemolyticus vtapetis vvulnificus wolbachia xfastidiosa yersinia ypseudotuberculosis yruckeri
bpseudomallei brachyspira	csputorum cupsaliensis	leptospira leptospira 2	neisseria orhinotracheale	sdysgalactiae senterica	tenacibaculum tpallidum	
brucella	dnodosus	leptospira_3	otsutsugamushi	sepidermidis	ureaplasma	

MLST T. Seemann, 2016. mlst Github https://github.com/tseemann/mlst

MLST Scans	genomes against PubMLST schemes. (Galaxy Version 2.16.1)	- Options
input_files		
	336: Cd_Al0156 334: Cd_Al0218 332: Cd_Al0503 330: Cd_RU_17 329: Cd_P2	0
· · ·	gram defaults.	•
✓ Execute		
	-	

- It scans contig files against traditional PubMLST typing schemes
- It auto-detects bacterial species, just uploading the sequences
- Output: it produces a tab-seperated file which contains: the filename
 the closest PubMLST scheme name (bacterial specie detected) the ST the allele IDs

1	2	3	4	5	6	7	8	9	10
ED0257-phantastic_contigs.fasta	ecoli	11	adk(12)	fumC(12)	gyrB(8)	icd(12)	mdh(15)	purA(2)	recA(2)
ED1262-phantastic_contigs.fasta	ecoli	11	adk(12)	fumC(12)	gyrB(8)	icd(12)	mdh(15)	purA(2)	recA(2)
ED0597-phantastic_contigs.fasta	ecoli	11	adk(12)	fumC(12)	gyrB(8)	icd(12)	mdh(15)	purA(2)	recA(2)

Auto-detection good to find any possible contamination

MLST

MLST does not just look for exact matches to full length alleles. It attempts to tell you as much as possible about what it found using the notation below:

Symbol	Meaning
n	Exact intact allele
	Novel full length allele similar to n
n?	Partial match to known allele
n,m	Multiple alleles
-	Allele missing

Setting Output novel alleles to true will produce an additional novel_alleles.fasta file containing the novel alleles.

Scoring system

Each MLST prediction gets a score out of 100. The score for a scheme with N alleles is as follows:

- +90/N points for an exact allele match e.g. 42
- +63/N points for a novel allele match (50% of an exact allele) e.g. ~42
- +18/N points for a partial allele match (20% of an exact alelle) e.g. 42?
- 0 points for a missing allele e.g. -
- +10 points if there is a matching ST type for the allele combination

Virulotyping - ARIES

Virulence profile, the 3rd level of strain characterization

Do we have STEC strains?

🗧 Galaxy / ARIES

E. Coli Virulotyper

E coli Virulotyper performs virulotyping of Escherichia coli (Galaxy Version 1.0)						
Is this a single-end or paired-end library						
Single-end	•					
FASTQ file 1 1 1 1 47: ED0605_lonXpress010_20180921.fastq.gz Must be of datatype "fastqsanger"	•					
✓ Execute						

E coli Virulotyper Overview This tool performs virulotyping:

- Raw data quality check (FASTQC)
- Virulotyping (pathotyper from INNUENDO)

Istituto Superiore di Sanità

European Union Reference Laboratory (EU-RL) for Escherichia coli, including Verotoxigenic E. coli (VTEC)

Developer: Arnold Knijn arnold.knijn@iss.it

Virulotyping - ARIES

- Mapping (Bowtie2) of the sequencing reads on the database
- Database of reference virulence genes sequences (in multiple allelic variants each) *E. coli* virulence finder database, Joensen JCM 2014
- Conversion of the output in a sam file (tabular) to extract interesting info and sequences
- Grouping of all the reads mapping to the different alleles for each gene
- Choosing the best allele matching for each gene found basing on the number of mapping reads and calculating the coverage
 - Percentage gene coverage (Gene length (min 90))
 - Gene mean read coverage (Gene depth coverage (min 15))
 - Percentage gene identity (min 90)

E coli Virulotyper

Report for Strain2_S5_L001_R1_001.fastq.gz Healt

2019-06-26 10:35 UTC

Summary

eae, stx2A, stx2B

Raw data quality check

FASTQC result forward: Webpage

FASTQC result reverse: Webpage

Virulotyping

This table is filtered for results with >90% gene coverage, unfiltered results can be found here

#gene	percentage gene coverage	gene mean read coverage	percentage gene identity
espb_12_ecu65681	97.67	10.54	99.89
iss_13_cu928160	100.0	21.02	99.71
espb_13_af054421	97.57	11.39	99.67
nlec_6_ap010960	100.0	98.54	99.9
lpfa_3_ap010953	100.0	26.39	100.0
iss_11_ae014075	100.0	9.67	99.42
espa_22_fm201463	100.0	24.69	100.0
iss_7_cu928163	91.16	8.81	99.63
nlea_12_am422003	98.34	18.8	99.92
iss_8_cp001665	98.98	17.14	99.66
eae_45_ecu59503	97.66	36.98	99.89
prfb_13_cp002970	100.0	20.06	100.0
cif_2_ay128535	95.29	13.68	99.88
stx2b_27_ae005174_a	92.96	6.54	99.2
espj_1_ab303060	100.0	21.28	99.85
nleb_12_fm201463	92.93	12.39	99.89
nlec_3_ap010953	100.0	37.98	99.59
iss_12_cu928158	100.0	12.55	100.0

Best match for the main virulence genes associated with STEC (eae, ehxa, stx1, stx2)

FASTQC report

Complete list of the best allele matching for each gene found

- Percentage gene coverage (Gene length (min90))
- Gene mean read coverage (Gene depth coverage (min15))
- Percentage gene identity (min90)

Istituto Superiore di Sanità Department of Food Safety, Nutrition and Veterinary Public Health European Union Reference Laboratory for *E. coli*