### PAST, PRESENT AND FUTURE OF FOOD-BORNE PARASITE RESEARCH

Edoardo Pozio

Rome, Italy

### The far past



- over millions of years, parasites have adapted to their hosts by escaping immune responses through different evolutionary choices:
  - development of the parasite in young hosts whose immune system is not yet well developed (e.g., *Cryptosporidium, Hymenolepis nana*)
  - development of the parasite faster than the host's immune response (e.g., *Toxoplasma*)
  - reduction of the exposure time to the final host's immune system due to developmental stages spent in intermediate hosts (e.g., Fasciola, Opisthorchis)
  - anatomical seizure of the parasite that does not come into contact with the host's immune system (e.g., *Echinococcus, Toxoplasma, Trichinella*)
  - settlement in organs or tissues of the host where the defense mechanisms are less efficient (e.g., *Fasciola* and *Opisthorchis* in bile ducts)



# Millions of years have given life to a wonderful dance



### The recent past of FBP research

- Studies of genomes
- Phylogeny of taxa
- Identification of sibling species
- Improvement of serological tests
- Antigen purification
- Investigation on humoral and cell-mediated immune responses against FBP
- Deep investigations on epidemiological patterns





### Few years ago, it was inconceivable to trace back *Trichinella* infections from fork to farm





#### Present research on FBP

- Library Preparation
  Bridge PCR
  Sequencing by Synthesis
- NGS approaches to FBP (e.g., Cryptosporidium, Giardia, Cyclospora, Trichinella)
- Metagenomics (e.g., to trace parasites in environmental samples)
- Investigations on the impact of parasites on the human gut microbiome
- Proteomics



### What we should keep in mind



- Most foodborne parasites (FBP) are linked with old and poor farming practices and/or to wildlife
- Poor farming practices are linked with uneducated farmers who, through their incorrect behavior, can favor transmission of e.g. *Echinococcus, Toxoplasma* and *Trichinella*
- Uneducated hunters and fishermen can favor transmission of meat- and fishborne parasites
- Uneducated pet animal owners can favour the spread of *Toxocara* eggs in the environment if they do not properly treat their animals
- The increase of the human population density in megacities results in a high environmental and water contamination with, e.g. *Cryptosporidium* and *Giardia*
- The increased temperature could favour the establishment in Europe of foodborne parasites currently circulating in tropical areas (e.g. *Cyclospora*)





### Parasites and the food supply system

- Food passes through various phases of a food supply system (farm to fork)
- Farmers, hunters, fishermen, globalization and climate change can impact on foodborne parasites at each phase of this system



## Possible links between climate change, hosts, parasites and ecosystems

- Globalization and climate change:
  - cause epochal migration of human populations
  - cause a reduction of animal species and habitat variability
  - have different impacts on foodborne parasites







10

### Climate change and foodborne parasites

- A direct influence on parasite cycles:
  - Increasing/decreasing the survival of parasite stages in the environment
    - Increased humidity favors the survival of parasite eggs and cysts/oocysts
    - Increased temperatures accelerate parasite development in the environment and in ectothermic hosts, but shorten the survival of parasite eggs, cysts and oocysts
    - Rainfall intensity increases the spread of eggs, oocysts and cysts by water
    - Increased drought periods reduce the survival of parasite eggs, oocysts and cysts, but increase the eggs, oocysts and cysts concentration in water
    - The ozone depletion reduces the survival and infectivity of parasites in the environment
    - The reduction of good water resources increases the risk of outbreaks due to the consumption of low quality water







### Climate change and foodborne parasites – The *Trichinella* example

- *Trichinella* infection strongly reduced in red foxes of Alps (from 20%-35% in the fifties to 0.0%-0.01% in the last years)
- At the same time, the snow depth and snow cover in the Alps showed a significant decrease
- We investigated the survival time of *Trichinella britovi* larvae in host carcasses preserved beneath or above the snow in the Alps
- The results showed that *T. britovi* larvae survive longer in carcasses beneath the snow than in those above the snow
- The stability of the environment beneath the snow favors the survival of *T. britovi* larvae in host muscles, increasing the probability of their transmission to other hosts
- On the other hand, the environment above the snow, characterized by sudden temperature variations, causes strong environmental stress for larvae in host carrions causing their death





### Change of biomasses



### The environmental impact of food animals



| Animal<br>species | Water consumption (L)<br>for 1 kg meat production | The future of meat<br>and fish consumption |
|-------------------|---------------------------------------------------|--------------------------------------------|
| Chicken           | 1,000                                             | <b>↑</b>                                   |
| Pig               | 6,000                                             | <b>^</b>                                   |
| Cattle            | 16,000                                            | ↓                                          |
| Fish              |                                                   | <b>^</b>                                   |



### Introduction of alien host species

• In the last century, 44 alien mammalian species reached Europe, including several carnivores, such as the American mink, the raccoon, the raccoon dog, and the jackal



*Echinococcus multilocularis Trichinella* spp.

Baylisascaris procyonis *Echinococcus* spp. *Trichinella* spp. Trichinella spp.

# Changes of animal behavior and population growth

• Increase of wild animal populations reservoir host of parasites



Trichinella spp. Echinococcus granulosus Toxoplasma gondii Sarcocystis suihominis

Large carnivores are making a comeback in Europe as a consequence of wild herbivores and wild boar population growth





Toxoplasma Trichinella Echinococcus

# Environmental changes and anthropization

- Increased availability of food resources for wild animals in urban and rural areas
- Increase of urban, residential outskirts, and suburban areas
- Reduction of rural areas and wild lands
- Reduction of the environmental hygiene
- Huge increase of pet animals, which, if no properly reared, can be the source of FBP (e.g., *Toxocara*, *Toxoplasma*)

### Toxocara spp. in urban and rural areas

- In the Western countries, the seroprevalence of *Toxocara* infection varies:
  - between 2% and 5% in urban areas
  - 15%–20% in semi-rural zones such as residential outskirts of large cities
  - peaks at 35%–42% in rural areas
- Factors that have been associated with an increased rate include a low socioeconomic level and poor environmental hygiene
- These factors could possibly be exacerbated by warm climates, i.e. those favored by the global warming

## Impact of globalization on meat and fish borne parasites - 1

- Most of meat and freshwater fish borne parasites occur in poor and disadvantaged areas of the world
- Industrial livestock and fish farms are exempted from foodborne zoonotic parasites
- Illegal importation of meat, freshwater fish products, and vegetables can be the source of human outbreaks when introduced by personal baggage:
  - Wild boar meat infected with *Trichinella* introduced from Eastern to Western European countries
  - *Opisthorchis* infected carp brought in Israel from Russia by immigrants

















## Impact of globalization on meat and fish borne parasites - 2

- Trade globalization may result in spreading:
  - Anisakidae worms by wild fish and cephalopods
  - 'atypical' *Toxoplasma gondii* strains by livestock and their meat from south America
    - persons infected by European *Toxoplasma gondii* strains are not protected against 'atypical' strains
  - freezing meat and fish products may reduce the health impact but cannot resolve the problem





## Introduction of new food habits

- The *Opisthorchis felineus* example
  - Described for the first time in lakes of Central Italy at the end of the 19<sup>th</sup> century
  - No human case were documented up to 2003, when the consumption of raw tench fillets began to be popular
  - More than 200 human infections have been described in 9 years (2003-2011)
  - Some tourists acquired the infection in Italy and developed the disease when they come back home (Netherlands, Austria)
  - Chronic and untreated infections can result in the development of cholangiocarcinoma





Impact of globalization on the international trade of vegetables and fruits

- Fruits and vegetables can be contaminated by *Cryprosporidium*, *Cyclospora* and *Toxoplasma* oocysts, *Giardia* and *Entamoeba* cysts, worm eggs
  - Contaminated fruits and vegetables have been imported from Central to North America
  - In the EU, fruits and vegetables are not tested for these pathogens







Relationship between meat trade globalization and food habits

- Trichinella spp. imported by horse meat
  - 8 outbreaks (2296 cases) of trichinellosis have been documented in France
  - 7 outbreaks (1038 cases) of trichinellosis have been documented in Italy
  - resulting from the consumption of horsemeat imported from Eastern European countries (Former Yugoslavia, Poland, Serbia, Romania) or from North America (Canada, Mexico, USA)





## Urbanization

- At the global level from 2010, people living in urban areas are more than people living in rural areas
  - In urban areas of megalopolises
    - the higher concentration of humans
    - the dissolution of social structure
    - the immigration of people with different cultural practices
    - the lack of sanitation, controlled water supply and sewerage system increase the risk of foodborne protozoa transmission (e.g., *Cryptosporidium, Giardia, Entamoeba, Toxoplasma*)
  - People with chronic foodborne parasite infections (e.g. echinococcosis, opisthorchiasis) acquired when they lived in rural areas years before, are not properly diagnosed and treated





## Carnivore populations from wild to urban areas

Wild populations are strongly limited by environmental factors:

- increased urban areas
- climate change

The urban populations are increasing:

- abundant feed resources
- lack of hunting pressure
- lack of large predators





# Control of foodborne parasites in the globalization and climate change era

- International food and health organizations need to provide consolidated safety guidelines for the most important foodborne parasites
- Integration of veterinary and public health efforts, i.e. the one health concept
- Training of physicians and veterinarians
- Education of both native and immigrant populations:
  - Consumers
  - Farmers
  - Hunters
  - Fishermen
- Information of policy makers
- Appropriate disposal of wastes of animal origin
- Control of drinking water resources
- Improvement of terrestrial and sea animal husbandry







### Foodborne parasites and immigrants

- Intestinal parasite burden (e.g., Ascaris, Trichuris, Entamoeba, Cyclospora, Cryptosporidium, Giardia, Taenia) reduces in few months due to the lack of reinfection, however:
  - Most European physicians are not aware of the epidemiology, clinical patterns, diagnosis and treatment of these infections
  - There is a strong reduction of the availability of anti-parasitic drugs on the EU market
  - No new anti-parasite drugs are being developed
- Cultural practices of immigrants can favor the transmission of foodborne parasites
  - Taenia saginata (field defecation of shepherds and farmers)
  - *Echinococcus granulosus* (dogs feed with offal and scraps of animals illegally slaughtered at the farm)















### The present

- Technologies strongly bias the research investigation, but not always research succeed to answer the questions
- We often use very powerful investigative tools, but we lack original ideas



### Translational parasitology



### Translational medicine

- 17 year innovation adoption curve from discovery into accepted standards of practice
- Lack of innovation adoption planning in the discovery process
- Even if an innovation is accepted as a standard of practice, patients have a 50/50 chance of receiving appropriate care



### What we need in the field of food-borne parasites

- Basic research
  - NGS of FBP
- New drugs
  - No effective drug available for cryptosporidiosis
  - Anti-*Toxoplasma* drugs are not active against tissue cysts
  - The drugs used today for the treatment of alveolar and cystic echinococcosis are only parasitostatic and not parasitocidal
- New diagnostic tools
  - to identify animals with active tissue cysts of *Toxoplasma gondii*
  - to unequivocally diagnose cystic and alveolar echinococcosis
  - to trace FBP from fork to farm
- New educational tools
  - to train farmers, hunters, fishermen, pet owners, consumers to veterinary and public health in the field of FBPs and their risks





- In the future, young parasitologists when will plan their investigations, will have to keep in mind these issues to prioritize their studies
- and at the end of the work, when the manuscript must be published ..... there is the review process!!!



