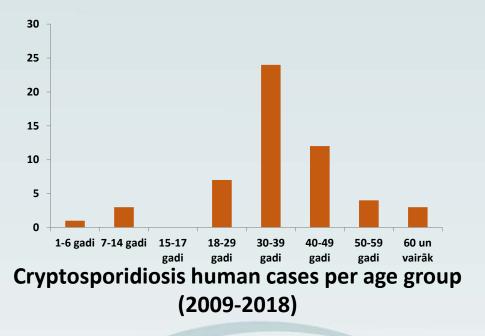

EPIDEMIOLOGY OF CRYPTOSPORIDIUM SPP. IN DAIRY CATTLE IN LATVIA


DEKSNE G. ^{1, 2*}, MATEUSA M.¹, DERBAKOVA A.³, PANKRATJEVA K.¹, KEIDĀNE D.³, ĶIBILDS J.¹, OZOLIŅA Z.¹, TROELL K.⁴

¹NATIONAL REFERENCE LABORATORY FOR PARASITES, INSTITUTE "BIOR", LATVIA; ²UNIVERSITY OF LATVIA, LATVIA; ³UNIVERSITY OF LIFE SCIENCES AND TECHNOLOGIES, LATVIA ⁴NATIONAL VETERINARY INSTITUTE,, SWEDEN

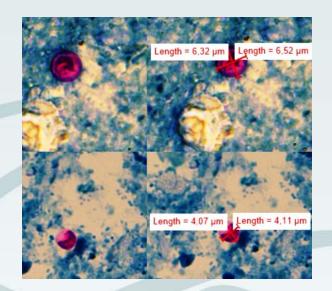
E-MAIL: GUNITA.DEKSNE@BIOR.LV

CRYPTOSPORIDIOSIS AND CRYPTOSPORIDIUM SPP. IN LATVIA

- All reported cryptosporidioisis cases are assumed to be single cases, associated with drinking untreated water
- No official reports available from livestock
- Very few studies in livestock (dairy cattle 19.4%), no studies in pet animals

04.06.2019.

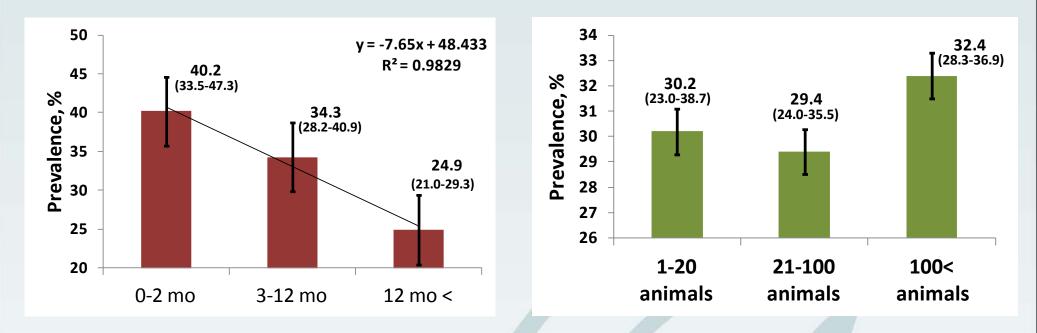
SO... WE HAD TO START FROM SOME WHERE ...


✤ We investigated the epidemiology of *Cryptosporidium* spp. in Latvia by testing fecal samples from 938 dairy cattle aged from one week to 11 years, raised on 141 cattle farms

The presence of *Cryptosporidium* spp. oocysts by concentration and modified Ziehl-Neelsen staining method

Species identification was done by sequencing of the 18S rRNA gene (gp60 for *C. parvum* subtyping)

Using a questionnaire, we surveyed factors that could be relevant for prevalence and transmission of *Cryptosporidium* spp. on the farms



CRYPTOSPORIDIUM SPP. IN CATTLE

Total prevalence - 28.8% (95% CI 26.0-31.8);

In 53.9% of farms were found at least one animal who shed the oocysts

CRYPTOSPORIDIUM SPP. IN CATTLE FARMS

Factor		No of analyzed animals	Prevalence, %	95% CI	p	
Type of holding animals*	Tethered	363	27.6	23.2-32.4	<0.01	
	Free	262	34.0	34.0-28.5		
Place of calving	Distinct	410	32.9	28.6-37.6	0.42	
	Same as sleeping place	215	25.1	19.8-31.3	0.43	
Separation of calves*	Immediately	601	28.8	25.3-32.5	<0.01	
	After 2-3 days	23	69.6	49.0-84.6		

04.06.2019.

CRYPTOSPORIDIUM SPP. IN CATTLE FARMS

Factor		No of analyzed animals	Prevalence, %	95% CI	p	
Holding calves in groups	Yes	361	29.4	24.9-34.3	0.58	
	Νο	264	31.4	26.1-37.3	0.56	
Age of calves when moved to groups	>1 week*	17	58.8	35.9-78.4		
	1-2 weeks	46	32.6	20.8-47.1	<0.01	
	<2 weeks	115	39.1	30.7-48.2		
	Older than 1 months	183	19.7	14.5-26.1		
Calves per group	1-5*	269	23.3	27.0-38.2		
	6-15	56	26.8	16.9-39.7	<0.01	
	15<	36	11.1	3.8-25.9		

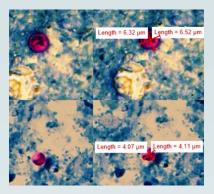
04.06.2019.

CRYPTOSPORIDIUM SPECIES COMPOSITION

Species	No of Isolates (n=67)/ Prevalence	Mean OPG	Mean age of animal (months)	Animals with diarrea, %
C. parvum*	24 / 35.8	2,100	5	<mark>33.3</mark> (17.8-53.4)
C. andersoni	20 / 29.9	950	16	15.0 (4.4-36.9)
C. bovis	15 / 22.4	3,354	30	6.7 (0.0-31.8)
C. ryanae	8 / 11.9	400	8	25.0 (6.3-59.9)
*subtyping is in I	process			

04.06.2019.

04.06.2019.


14th Workshop on NRLs or parasites, 23rd-24th of May, 2019 Rome, Italy

CONCLUSIONS

- There are still lots of things to do...
- There should be more human cases as reported currently
- We need to raise higher awareness of cryptosporidiosis in Latvia (start with veterinarians and farmers)

THANK YOU FOR YOUR ATTENTION!

ACKNOWLEDGEMENT: THIS STUDY WAS FUNDED BY THE EUROPEAN REGIONAL DEVELOPMENT FUND "1.1.1.2. "POST-DOCTORAL RESEARCH AID" POSTDOCTORAL RESEARCH AID "ONE HEALTH" MULTIDISCIPLINARY APPROACHES FOR EPIDEMIOLOGY AND PREVENTION OF SELECTED PARASITIC ZOONOSIS (OMEPPAZ), (1.1.1.2/VIAA/1/16/204)" AND IS PARTLY BASED UPON COLLABORATION WITHIN THE FRAMEWORK OF COST ACTION FA1408 (A EUROPEAN NETWORK FOR FOODBORNE PARASITES (EURO-FBP)) AND SHORT TERM SCIENTIFIC MISSION, SUPPORTED BY COST (EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY). THE AUTHORS WOULD LIKE TO THANK HARRI AHOLA FROM SVA (SWEDEN) FOR THE HELP IN LABORATORY WORKS AND ESPECIALLY FOR THE HELP WITH PCR OPTIMIZATION.

PĀRTIKAS DROŠĪBAS, DZĪVNIEKU VESELĪBAS UN VIDES ZINĀTNISKAIS INSTITŪTS

www.bior.lv