

Detection of protozoan parasites in food: progress, challenges, and perspectives

20th Workshop of the National Reference Laboratories for Parasites 28-29 October 2025

European Union Reference Laboratory for Parasites

Unit of Foodborne and Neglected Parasitic Diseases

Department of Infectious Diseases

ISTITUTO SUPERIORE DI SANITÀ

Stéphanie La Carbona, PhD ACTALIA

ACTALIA

Expertise Center for Food Industries

210 collaborators

12 locations in France

Turnover: 20 M€

Head office: Saint-Lô

- Non profit organization with private and research activities
- Acknowledged by the french Ministry in charge of Food

A service offer dedicated to food companies

8

From a new product idea to the production

Control of the microbiological quality of food and water through technology

Environmental performances

Specialization in the dairy sector

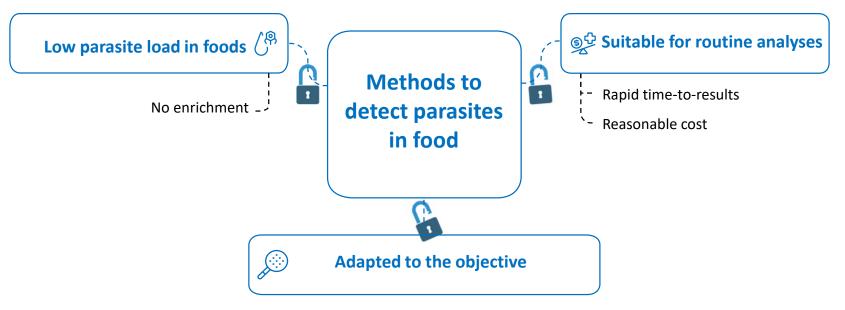
ACTALIA Food Safety Department

Positioning and national specificities

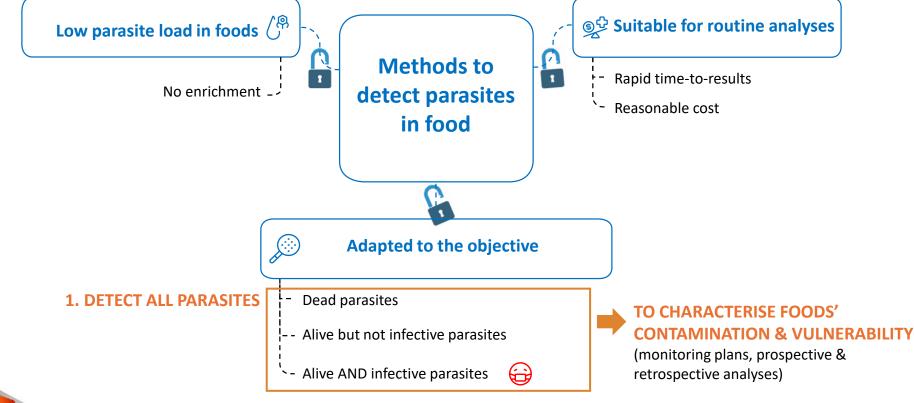
Technological platform of biosafety level 3

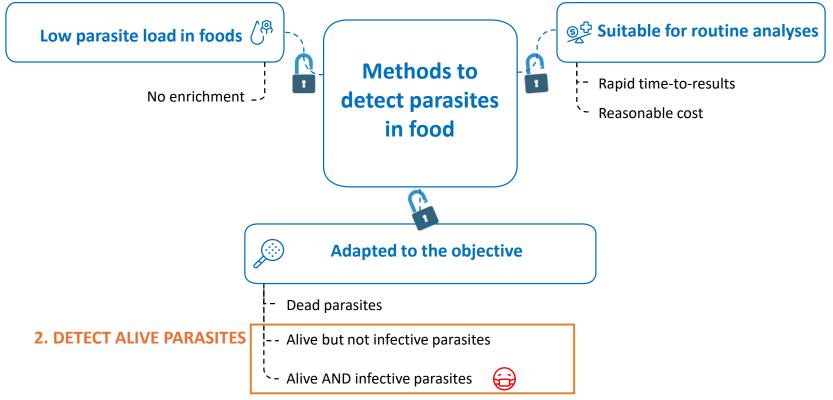
VIROLOGY (enteric viruses, emerging viruses) [since 2010]

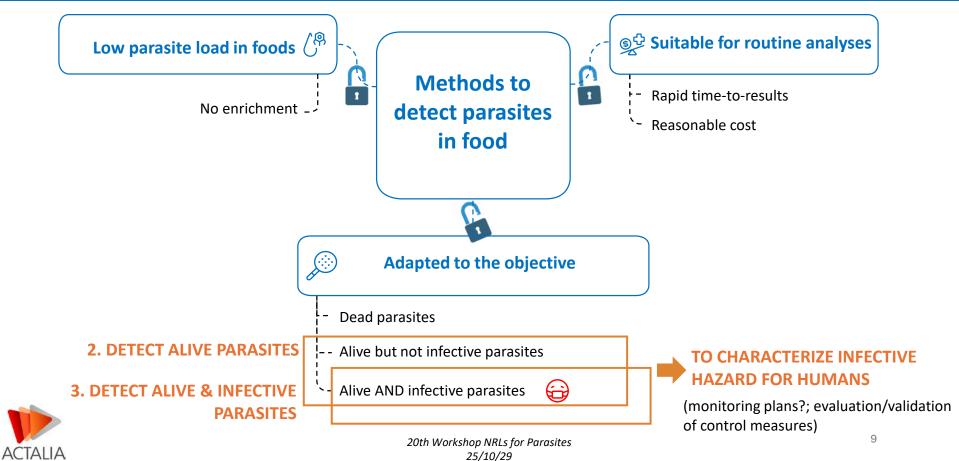
PARASITOLOGY (protozoa, Anisakidae) [since 2014]

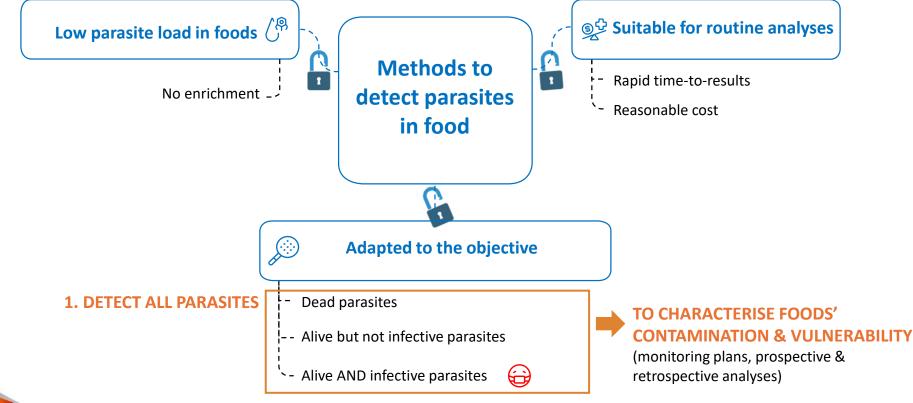

FOOD PROCESS

[platform since 2015]









Methods to detect all parasites

ISO 18744 (2016): Microbiology of the food chain — Detection and enumeration of Cryptosporidium and Giardia in fresh leafy green vegetables and berry fruits

Amendment ...

ISOLATION

(OO)CYSTS DETECTION

Methods to detect all parasites

ISO 18744 (2016):

Microbiology of the food chain — Detection and enumeration of Cryptosporidium and Giardia in fresh leafy green vegetables and berry fruits

Amendment ...

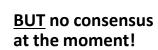
BAM Chapter 19a: Detection of Cyclospora and Cryptosporidium from Fresh Produce: Isolation and Identification by Polymerase Chain Reaction

(PCR) and Microscopic analysis

Microscopy, **nPCR**

(2024)

BAM Chapter 19b: Molecular Detection of Cyclospora cayetanensis in Fresh Produce Using Real-Time PCR



qPCR

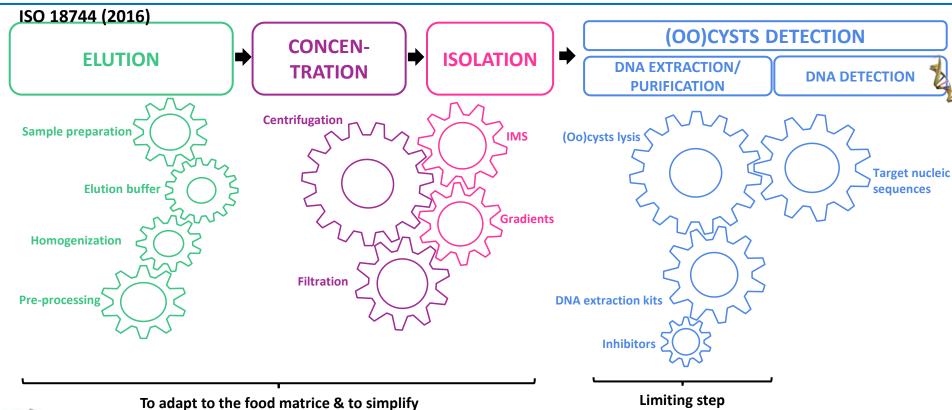
No standard for *T. gondii*:

In-house molecular methods (nPCR, PCR, qPCR)

MOLECULAR METHODS (qPCR)

Detection of all parasites by qPCR: need for harmonization

1. Method's development and selection



- Best performances
- Easy-to-implement

Detection of all parasites by qPCR: need for harmonization

Detection of all parasites by qPCR: need for harmonization

1. Method's development and selection

2. Performance validation of the selected method

Which performance criteria? How to determine them?

ISO 17468:2016

Microbiology of the food chain — Technical requirements and guidance on establishment or revision of a standardized reference method

ISO 16140-2:2016

Microbiology of the food chain — Method validation — Part 2: Protocol for the validation of alternative (proprietary) methods against a reference method

ISO 16140-3:2021

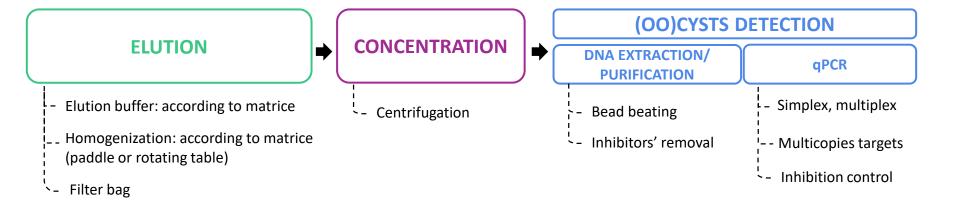
Microbiology of the food chain — Method validation —

Part 3:

Protocol for the verification of reference methods and validated alternative methods in a single laboratory

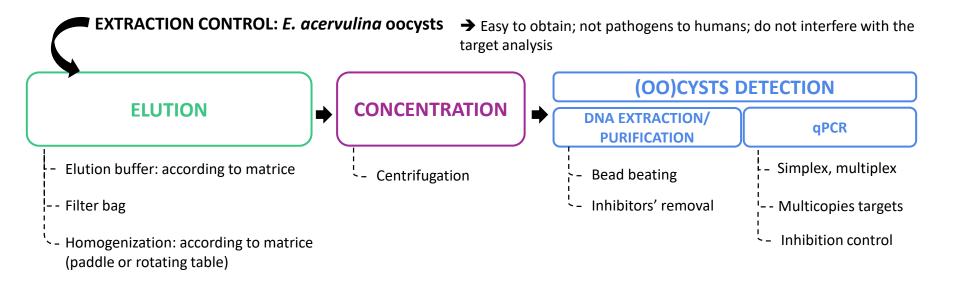
ISO/AWI 16140-8

Microbiology of the food chain — Method validation


Part 8: Protocol for the validation of alternative methods against a reference method for viruses or parasites

Detection of all parasites by qPCR: promising standardized method

Detection of all parasites by qPCR: promising standardized method


Some examples of LD₉₅ ((oo)cysts/g or oocysts/L)

		F	SHELLFISH	DAIRY PRODUCTS				
		FF	RESH		FROZEN		Mussels tissues	Raw milk
	Lettuce	Coriander	Parsley	RTE salads	Raspberries	Parsley	Widssels tissues	[cow]
T. gondii	< 1	< 1	< 1	< 1	< 1	2 < LD < 20	4 < LD < 20	ND
	(Berrouch, 2021)			(Calero-Bernal, 2025)	(Unpublished, pers. comm.)		(Cazeaux, 2022)	
C. parvum	2 < LD < 4	< 1	1 < LD < 4	< 1	< 1	10 < LD < 20	40 < LD < 400	50 < LD < 100
	(Unpublished, pers. comm.)	(Berrouch, 2021)		(Mayer-Scholl, 2022)	(Unpublished, pers. comm.)		(Cazeaux, 2022)	(Unpublished, pers. comm.)
G. duodenalis	< 1	< 1	< 1	ND	< 1	2 < LD < 20	4 < LD < 20	ND
	(Berrouch, 2021)				(Unpublished, pers. comm.)		(Cazeaux, 2022)	

Detection of all parasites by qPCR: promising standardized method

Detection of all parasites: alternatives to qPCR?

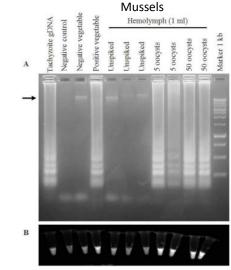
Detection by PCR:

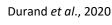
Sequencing confirmation and/or genotyping

- Sensitivity
- Agarose gel for routine analyses

Loop-Mediated Isothermal Amplification-Lateral-Flow Dipstick (LAMP-LFD) to detect *Toxoplasma gondii* oocyst in ready-to-eat salad

Marco Lalle ° ♀ ⊠, Alessia Possenti °, Jitender P. Dubey b, Edoardo Pozio °


<u>Detection by LAMP</u> (Loop-Mediated Isothermal Amplification):



- No need for specific and expensive equipments
- Sensitivity

- Potential of false positive
- Agarose gel for routine analyses

Detection of all parasites: alternatives to qPCR?

Detection by DNA-based NGS approaches:

- targeted metagenomics: sequencing of specific markers (mainly 18S rDNA)

untargeted metagenomics: sequencing of total DNA from a sample

- Simultaneous detection of different parasites
- Genotyping

Competition from eukaryotic sequences of food matrices

- Sensitivity
- False positives

Detection of parasites in food and water matrices by shotgun metagenomics: A narrative review[★]

Paolo Vatta, Simone M. Cacciò

Application of next generation sequencing for detection of protozoan pathogens in shellfish

Catherine DeMone ^{a,b}, Mei-Hua Hwang ^c, Zeny Feng ^b, J. Trenton McClure ^d, Spencer J. Greenwood ^e, Rebecca Fung ^f, Minji Kim ^g, J. Scott Weese ^c, Karen Shapiro ^{c,f,*}

Establishing the Performance of Next-Generation Amplicon Sequencing for Detection of *Giardia duodenalis* in Ready-to-Eat Packaged Leafy Greens

Holly Nichols[†], Monica Santin, Jenny G. Maloney^{*}

Methods to quantify all parasites

<u>qPCR</u>:

0

Combine sensitivity and quantification

Variability of quantification results according to used standards

Methods to quantify all parasites

qPCR:

 \odot

Combine sensitivity and quantification

Variability of quantification results according to used standards

Digital droplet PCR:

- Absolute quantification & no need for standards

- Less affected by inhibitors

Sensitivity relative to qPCR

Droplet generation depends on quality of DNA extract

> J Food Prot. 2025 Aug 22;88(9):100568. doi: 10.1016/j.jfp.2025.100568. Epub 2025 Jun 24.

Optimized Molecular Detection of Cryptosporidium Within the Water-Soil-Plant-Food Nexus: Advancing Surveillance in Agricultural Systems

Robyn Marijn Schipper 1, Loandi Richter-Mouton 1, Lise Korsten 2

> Front Microbiol. 2023 Sep 8:14:1238689. doi: 10.3389/fmicb.2023.1238689. eCollection 2023.

First application of a droplet digital PCR to detect Toxoplasma gondii in mussels

Andrea Mancusi ¹, Yolande T R Proroga ¹, Angela Giordano ¹, Santa Girardi ¹, Francescantonio D'Orilia ², Renato Pinto ³, Paolo Sarnelli ³, Laura Rinaldi ² ⁴, Federico Capuano ¹, Maria Paola Maurelli ⁴

Unpublished, pers. comm.

Methods to quantify all parasites

qPCR:

 \odot

Combine sensitivity and quantification

Variability of quantification results according to used standards

Digital droplet PCR:

- Absolute quantification & no need for standards
- Less affected by inhibitors

Sensitivity relative to qPCR

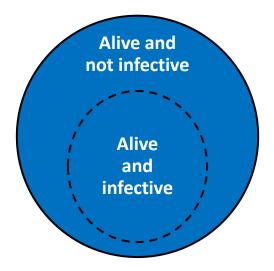
Droplet generation depends on quality of DNA extract

> Acta Trop. 2025 Oct:270:107804. doi: 10.1016/j.actatropica.2025.107804. Epub 2025 Aug 25.

Digital PCR-based detection of Cryptosporidium in Pancreatic Tissue and Saliva Samples of Cancer patients; Pancreatic cryptosporidiosis

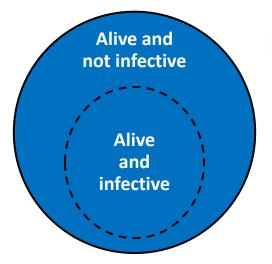
Tufan Gumus ¹, Deniz Ece ², Can Muftuoglu ², Ufuk Mert ³, Ecem Kalemoglu ⁴,
Goksever Akpinar ⁵, Milad Asadi ², Tolga Coskun ², Hamid Alizadeh ⁶, Alper Uguz ⁷, Ayse Caner ⁸

PLoS Negl Trop Dis. 2024 May 20;18(5):e0012153. doi: 10.1371/journal.pntd.0012153. eCollection 2024 May.


Employing digital PCR for enhanced detection of perinatal Toxoplasma gondii infection: A crosssectional surveillance and maternal-infant outcomes study in El Salvador

Mary K Lynn ¹, Marvin Stanley Rodriguez Aquino ², Pamela Michelle Cornejo Rivas ², Xiomara Miranda ³, David F Torres-Romero ⁴, Hanson Cowan ¹, Maddeleine M Meyer ¹, Willber D Casthr-Godoy ² ⁴, Mufaro Kanyangarara ¹, Stella C W Self ¹, Berry A Campbell ⁵, Melissa S Nolan ¹

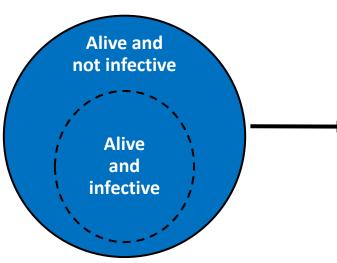
Methods to detect alive parasites



Methods to detect all alive parasites

Assessing viability and infectivity of foodborne and waterborne stages (cysts/oocysts) of *Giardia duodenalis, Cryptosporidium* spp., and *Toxoplasma gondii*: a review of methods

Angélique Rousseau^{1,2,5}, Stéphanie La Carbona^{2,*}, Aurélien Dumètre³, Lucy J. Robertson⁴, Gilles Gargala⁵, Sandie Escotte-Binet¹, Loïc Favennec⁵, Isabelle Villena¹, Cédric Gérard⁶, and Dominique Aubert¹



Overestimation of the infective hazard

Methods to detect all alive

Overestimation of the infective hazard

Determination of the efficacy of control Detection in Agreement Agreement Methods Parasites naturally with with measures contaminated infectivity infectivity samples assavs assavs Simple matrix^b: Excystation $C_{\mathbf{p}}$ Drinking water [80] NA Ability of H₂O₂-based disinfectants [176] trophozoites / Chlorine [29], Chlorine dioxide, sporozoites to escape Monochloramine [129] from the cysts / Ozone [29,34,73,129] oocysts after Ammonia [116] stimulation Liming, alum and ferric sulfate floccing NA Vital dve-exclusion Wastewater [6] $C_{\mathbf{p}}$ NA Simple matrix: (propidium iodide) Surface water [190] H₂O₂-based disinfectants [176] Ability of cells to Marine water [191] NA Chlorine [29] exclude the dve Drinking water [6] NA Ozone [29,34] (membrane intact Cockles, mussels, NA Ammonia [116] cells) & staining of clams [90] Liming, alum and ferric sulfate floccing NA dead cells [183] RT-PCR Ability of cells to NA **Suitability with routine analyses ...!?** produce mRNA IOS [hsp70, β -tubulin [15.97] FISH C_{D} Water [138] NA Simple matrix: NA Oysters [93] NA Gamma irradiation [185] Ability of cells to produce rRNA Storage 15 °C (9 m) [93] NA \mathbf{G} Water [138] NA NAPMA-PCR Water [149] NA Simple matrix: $C_{\mathbf{p}}$ Ability of cells to H-O-[144] NAexclude PMA NA **Suitability with routine analyses ...!?** membrane intact NA cells) & no Storage at RT (14 m) [33] NA mplification in dead Storage 4 °C (up to 48 m) [hsp70] [144] NA cells \mathbf{G} Water [149] NA NA NA Food matrix:

Applications

Storage 4 °C (8 d) — Basil [β-qiardin] [104]

Molecular methods to detect all alive parasites

RT-qPCR: ALIVE PARASITES ARE METABOLICALLY ACTIVE → PRODUCTION OF mRNA

- 0
- Applicable to foods
- Quantitative
- <u>-</u>

Variable LoD depending on food

- Control measure assessment (underestimation of the efficiency = securization of the product)
- Surveillance and prospective studies

Development of a qRT-PCR method to assess the viability of *Giardia* intestinalis cysts, *Cryptosporidium* spp. and *Toxoplasma gondii* oocysts

Emmanuelle Travaillé ^a, Stéphanie La Carbona ^b, Gilles Gargala ^c, Dominique Aubert ^d, Karine Guyot ^e, Aurélien Dumètre ^f, Isabelle Villena ^d, Maryline Houssin ^{a,*}

Simultaneous detection of the protozoan parasites *Toxoplasma*, *Cryptosporidium* and *Giardia* in food matrices and their persistence on basil leaves

Jeanne Hohweyer ^a, Catherine Cazeaux ^b, Emmanuelle Travaillé ^c, Emilie Languet ^b, Aurélien Dumètre ^d, Dominique Aubert ^a, Christine Terryn ^c, Jitender P. Dubey ^f, Nadine Azas ^d, Maryline Houssin ^c, Favennec Loïc ^g, Isabelle Villena ^a, Stéphanie La Carbona ^{b, c}

Molecular detection and viability discrimination of zoonotic protozoan pathogens in oysters and seawater

Minji Kim^a, Lezlie Rueda^a, Andrea Packham^b, James Moore ^{c,d}, Stefan Wuertz ^{e,f,g}, Karen Shapiro ^{a,*}

Quantification of viable protozoan parasites on leafy greens using molecular methods

Minji Kim ^{a,b}, Karen Shapiro ^a, Verónica B. Rajal ^{c,d}, Andrea Packham ^a, Beatriz Aguilar ^a, Lezlie Rueda ^a. Stefan Wuertz ^{b,d,e,*}

Molecular methods to detect all alive parasites

PMA-qPCR: ALIVE PARASITES ARE NOT PERMEABLE TO PMA → DNA AMPLIFICATION

- No discrimination between live and dead parasites
- Not easily applicable to foods

Control measure assessment

Surveillance and prospective studies

Evaluation of propidium monoazide-based qPCR to detect viable oocysts of *Toxoplasma gondii*

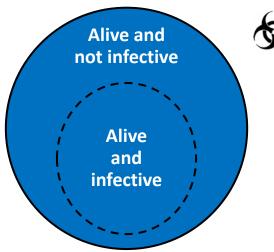
Angélique Rousseau ^{1,2,3} · Isabelle Villena ² · Aurélien Dumètre ⁴ · Sandie Escotte-Binet ² · Loïc Favennec ³ · Jitender P. Dubey ⁵ · Dominique Aubert ² · Stéphanie La Carbona ¹ · Dominique Aubert ² · Dominique Aubert ² · Stéphanie La Carbona ¹ · Dominique Aubert ² · Dominique Aubert ² · Stéphanie La Carbona ¹ · Dominique Aubert ² · Dominique Aubert ² · Stéphanie Aubert ² · Dominique Aubert ² · Dominique Aubert ² · Stéphanie Aubert ² · Dominique Aube

Methods to assess the effect of meat processing on viability of *Toxoplasma* gondii: towards replacement of mouse bioassay by in vitro testing

Marieke Opsteegh, Cecile Dam-Deisz, Paulo de Boer, Stephane DeCraeye, Andrea Faré, Paul Hengeveld, Ruud Luiten, Gereon Schares, Conny van Solt-Smits, Bavo Verhaegen, Theo Verkleij, Joke van der Giessen, Henk J. Wisselink

Quantification of viable protozoan parasites on leafy greens using molecular methods

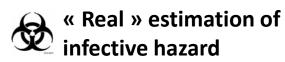
Minji Kim ^{a,b}, Karen Shapiro ^a, Verónica B. Rajal ^{c,d}, Andrea Packham ^a, Beatriz Aguilar ^a, Lezlie Rueda ^a, Stefan Wuertz ^{b,d,c,*}



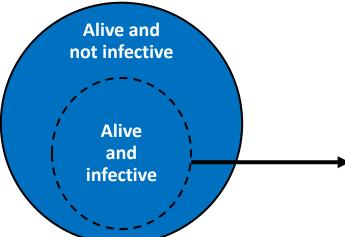
Methods to detect alive and infective parasites

Assessing viability and infectivity of foodborne and waterborne stages (cysts/oocysts) of *Giardia duodenalis, Cryptosporidium* spp., and *Toxoplasma gondii*: a review of methods

Angélique Rousseau^{1,2,5}, Stéphanie La Carbona^{2,*}, Aurélien Dumètre³, Lucy J. Robertson⁴, Gilles Gargala⁵, Sandie Escotte-Binet¹, Loïc Favennec⁵, Isabelle Villena¹, Cédric Gérard⁶, and Dominique Aubert¹



« Real » estimation of infective hazard



Methods to detect alive and infective parasites

ACTALIA

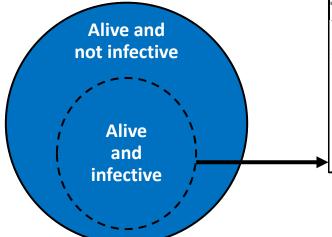
Parasites	Applications				
	Detection in naturally contaminated samples	Determination of the efficacy of control measures $\!\!\!^{\mathrm{a}}$			
Ср	River water [210] Wastewater [109] Mussels, clams, oysters, cockles [67,69,70,71,88,90,143]	Simple matrix ^b : H ₂ O _x -based disinfectants [176] Chlorine dioxide [198] Ozone [141,187], ozone + monochloramine/ + chlorine [27,28] Salinity: 10, 20 and 30 ppt of salt at 10 °C or 20 °C (12 w) [68] UV [11,46,148,154,187,195,198] US [172] Pasteurization [99] Storage 15 °C (9 m) [115] Storage 4 °C and 10 °C (8 w) [142] Storage 4 °C and 10 °C (8 w) [68]			
= reference me		Food matrix: UV - Fresh apple cider [98] PUV - Raspberries [131] HHP, e-beam, microwaves - Oysters [42,43] Heat (steam cooking) - Mussels [91] Pasteurization - Milk [99] Storage 6°C (4w)-Apple [150] Simple matrix: Ozone [74] UV [37,139,140,154,196] Gamma irradiation [203]			
	ce me	Cp River water [210] Wastewater [109] Mussels, clams, oysters, cockles [67,69,70,71,88,90,143] Ce method G Wastewater [82,109,140] Raw and chlorinated drinking water [111] T Water [12,110,219]			

- Reliable & Sensitive
- Applicable to foods

Semi-quantative

Not applicable to large scale

Control measure assessment


X Surveillance and prospective studies

Methods to detect alive and infective parasites

Methods	Parasites	Applications			
		Detection in naturally contaminated samples	Determination of the efficacy of control measures $\!\!\!^{\mathrm{a}}$		
Bioassays — Ability of (oo)cysts to induce infection of animals	Ср	River water [210] Wastewater [109] Mussels, clams, oysters, cockles [67,69,70,71,88,90,143]	Simple matrix ^b : H ₂ O ₂ -based disinfectants [176] Chlorine dioxide [198] Ozone [141,187], ozone + monochloramine/ + chlorine [27,28] Salinity: 10, 20 and 30 ppt of salt at 10 °C or 20 °C (12 w) [68] IV 11,46,184,185,187,105,108]		
Cell culture infection — Ability of (oo)cysts to invade and infect cells	Ср	Wastewater [85] Water [133,190]	Simple matrix: Chlorine [15,193], Chlorine dioxide [198], MOS [122] Ozone [122,187] UV [83,122,123,186,187,195,198] Heat 38 °C to 70 °C [193] Storage 15 °C (9 m) [115] Food matrix: Organic acids and hydrogen peroxide — Fruit juices [127]		
	Ch	NA	Simple matrix: UV [118]		
	Т	NA	Simple matrix: Chlorine [218] Iodophore-based disinfectants, formalin, acidified ethanol [218] Ozone [59] UV [59,223]		

Molecular-based methods: CC-qPCR

→ Reduce the number of steps for application to foods

CC-qPCR *T. gondii*: Which stage to use?

- Additional stepsVariable cell infection rate

sporozoite

Using quantitative reverse transcriptase PCR and cell culture plaque assays to determine resistance of Toxoplasma gondii oocysts to chemical sanitizers

Eric N. Villegas a.b.*, Swinburne A.J. Augustine a, Leah Fohl Villegas a, Michael W. Ware a, Mary Jean See b, H.D. Alan Lindquist c, Frank W. Schaefer III c, J.P. Dubey d

Determining UV Inactivation of Toxoplasma gondii Oocysts by Using Cell Culture and a Mouse Bioassay[∇]

Michael W. Ware, Swinburne A. J. Augustine, S David O. Erisman, Mary Jean See, † Larry Wymer, Samuel L. Hayes, J. P. Dubey, and Eric N. Villegas.

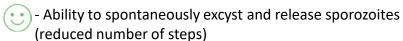
CC-qPCR *T. gondii*: Which stage to use?

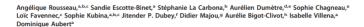
Low spontaneous excystation rate → Low cell infection rate

oocyst

(Unpublished, pers. comm.)

CC-qPCR *T. gondii*: Which stage to use?





- LD₁₀₀ in mussels =10 infective oocysts
- Short time to results (3 days)

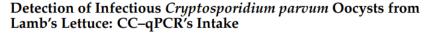
- Not quantitative in mussels
- Transfer to- and performance in- other foods

Toxoplasma gondii Oocyst Infectivity Assessed Using a Sporocyst-Based Cell Culture Assay Combined with **Quantitative PCR for Environmental Applications**

Control measure assessment

Surveillance and prospective studies

CC-qPCR *C. parvum*: Which stage to use?


Detection of Infectious *Cryptosporidium parvum* Oocysts from Lamb's Lettuce: CC-qPCR's Intake

Sophie Kubina ^{1,2,*}, Damien Costa ^{2,3}, Loïc Favennec ^{2,3}, Gilles Gargala ^{2,3}, Angélique Rousseau ^{1,4}, Isabelle Villena ⁴, Stéphanie La Carbona ¹, and Romy Razakandrainibe ^{2,3,*}

CC-qPCR *C. parvum*: Which stage to use?

Sophie Kubina ^{1,2,*}, Damien Costa ^{2,3}, Loïc Favennec ^{2,3}, Gilles Gargala ^{2,3}, Angélique Rousseau ^{1,4}, Isabelle Villena ⁴, Stéphanie La Carbona ¹(9) and Romy Razakandrainibe ^{2,3,*}

- Ability to spontaneously excyst and release sporozoites with high cell infection rate (reduced number of steps)
- Applicable to different foods
- Low limits of detection in foods (e.g. $LD_{50} = 10$ oocysts/g in lamb's lettuce)
- Quantitative
- Short time to results (2 days)

- Need for IMS
- Applicability to all *Cryptosporidium* species and genotypes?

Persistence and survival of *Cryptosporidium parvum* oocysts on lamb's lettuce leaves during plant growth and in washing conditions of minimally-processed salads

Control measure assessment

Surveillance and prospective studies

Sophie Kubina ^{a, b, *}, Damien Costa ^{b, c}, Catherine Cazeaux ^a, Isabelle Villena ^d, Loïc Favennec ^{b, c}, Romy Razakandrainibe ^{b, c}, Stéphanie La Carbona ^a

Detect alive and infective parasites: other approachs?

Intestinal organoids:

Study of parasite development and host-parasite interactions

Application to foods and risk assessment?

Rapid review: Recent advances in in vitro models for the study of Cryptosporidium parvum.

Varegg MS, Woolsey ID, Robertson LJ, Jiménez-Meléndez A.

Curr Res Parasitol Vector Borne Dis, 2025 May 15;7:100269, doi: 10.1016/j.crpvbd.2025.100269.

eCollection 2025.

In vitro cultivation methods for coccidian parasite research.

Feix AS, Cruz-Bustos T, Ruttkowski B, Joachim A.

Int J Parasitol. 2023 Aug;53(9):477-489. doi: 10.1016/j.ijpara.2022.10.002. Epub 2022 Nov 15

PMID: 36400306 Free article. Review.

Organoid-based in vitro system and reporter for the study of Cryptosporidium parvum sexual reproduction.

Korwin-Mihavics BR, Dews EA, Miller P, Cameron A, Martorelli di Genova B, Huston CD.

Microbiol Spectr. 2025 Aug 5;13(8):e0050225. doi: 10.1128/spectrum.00502-25. Epub 2025 Jun 25.

PMID: 40558094 Free PMC article.

Monitoring plans
Prospective/Retrospective studies
[low level of parasites]

Control measures assessment

[high level of parasites]

Monitoring plans
Prospective/Retrospective studies
[low level of parasites]

Control measures assessment

[high level of parasites]

Standardized DNA-based detection methods

qPCR

- Sensitivity
- Ability to quantify (required if criteria ...one day)
- Accessible to analytical labs with reduced cost and time-to-result

Standards

----→ dPCR?

Monitoring plans
Prospective/Retrospective studies
[low level of parasites]

Control measures assessment

[high level of parasites]

Standardized DNA-based detection methods

qPCR

- Recovery procedures adapted to each food category and/or item
- Standardized DNA extraction procedure
- Standardized qPCR assays for each parasite + Inhibition control (duplex)

Standardized validation of the procedure and performance criteria

Monitoring plans
Prospective/Retrospective studies
[low level of parasites]

Control measures assessment

[high level of parasites]

Standardized DNA-based detection methods

qPCR

- Project in progress: Cyclospora and fresh produce
- Next projects?

T. gondii and fresh produce Alternative to ISO 18744; Cryptosporidium spp. and fresh produce

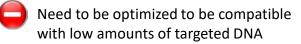
Monitoring plans
Prospective/Retrospective studies
[low level of parasites]

Control measures assessment

[high level of parasites]

Standardized DNA-based detection methods

qPCR


Complementary strategies to gain information about the associated risk

NGS 🧲

- Exhaustive and open-minded view
- Becomes accessible

Monitoring plans
Prospective/Retrospective studies
[low level of parasites]

Control measures assessment

[high level of parasites]

Standardized DNA-based detection methods

RT-qPCR or CC-qPCR methods

qPCR

Complementary strategies to gain information

about the associated risk

NGS

RT-qPCR

- Applicable to all parasites and foods
- Quantitative ⇒ Determine inactivation levels, i.e. control measure efficiency

ALL alive parasites ⇒ underestimation of the effiency ⇒ « worst case scenario » approach

Monitoring plans
Prospective/Retrospective studies
[low level of parasites]

Control measures assessment

[high level of parasites]

Standardized DNA-based detection methods

RT-qPCR or CC-qPCR methods

qPCR

RT-qPCR

Complementary strategies to gain information about the associated risk

CC-qPCR Only for Cryptosporidium for now

NGS

- Applicable to all foods
- Quantitative \Rightarrow Determine inactivation levels, i.e. control measure efficiency
- Real estimation of the infective hazard

Monitoring plans
Prospective/Retrospective studies
[low level of parasites]

Control measures assessment

[high level of parasites]

Standardized DNA-based detection methods

RT-qPCR or CC-qPCR methods

qPCR

RT-qPCR

Complementary strategies to gain information about the associated risk

CC-qPCR

NGS

To identify new infectivity markers or inactivation markers to propose new tools?

Methods to detect parasites: conclusion

METHODS TO DETECT PARASITES IN FOOD AND WATER

IMPROVING THE SURVEILLANCE AND DATA COLLECTION

PROVIDING PUBLIC HEALTH AUTHORITIES WITH THE MEANS FOR RISK ASSESSMENT

ACTALIA Food Safety Dpmt

Parasitology service:

C. Cazeaux - M. Le Blond - E. Martin

Biosafety level 3 pilot plant

Perspectives

- Duplex qPCR
- NGS
- Crypto : intérêt du 18S
- Stratégie : qPCR + NGS
- Viabilité en surveillance ?
- ⇒ Gather efforts to propose standardized methods accessible to analytical labs, with reduced cost and time-to-result
 - Feasibility of a one-suit-in-all method?
- ⇒ Harmonize performance and validation requirements for parasites detection in foc
- ⇒ Need to validate an alternative method to ISO 18744 (according to ISO 16144-2?)