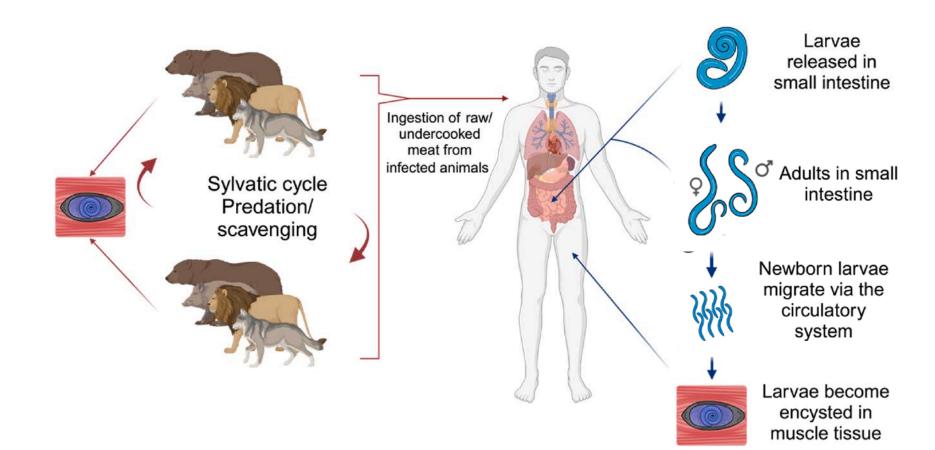



## Identification of stage-specific *Trichinella spp.* antigens to develop a high sensitivity serological tool for diagnosis



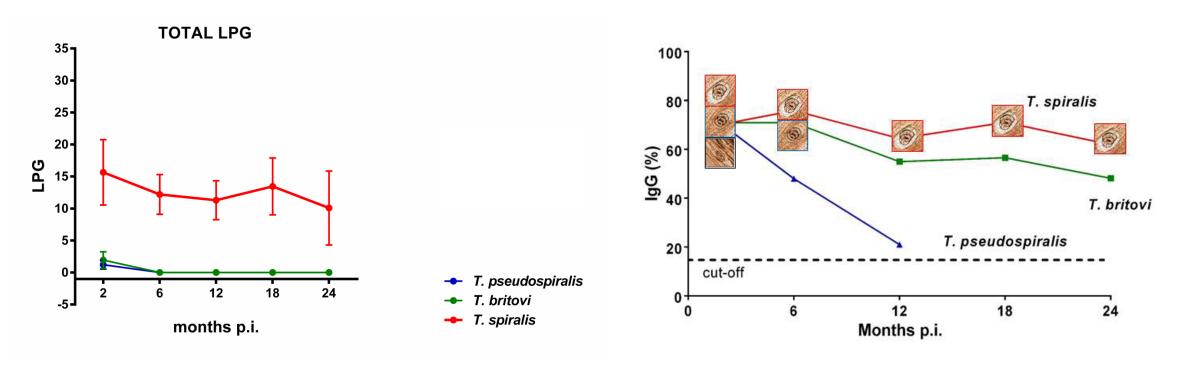

By courtesy of Gianluca Marucci

### Chiara Currà, PhD

European Union Reference Laboratory for Parasites November 6-7th 2024 Istituto Superiore di Sanità, Rome



- Trichinella spp are foodborne parasites widely distributed all around the world
- the genus is currently comprised of 13 taxa: 10 named species [*T. spiralis* (T1), *T. nativa* (T2), *T. britovi* (T3), *T. pseudospiralis* (T4), *T. murrelli* (T5), *T. nelsoni* (T7), *T. papuae* (T10), *T. zimbabwensis* (T11), *T. patagoniensis* (T12), *T. chanchalensis* (T13) and three unnamed genotypes (*Trichinella* T6, T8, and T9) (<u>Pozio, 2021</u>; <u>Sharma et al., 2020</u>).
- encapsulated species vs non-encapsulated species (T. pseudospiralis) (Garkavi 1972)




Malone et al, 2024

- All *Trichinella*-susceptible animals intended for human consumption are required to be tested for the presence of *Trichinella* larvae in the muscles (Commission Implementing Regulation (EU) 2015/1375).
- No stage-specific antigens are available for diagnosis so usually Trichinella is detected in late stage, when
  muscle larvae are formed

Actually, an antigene from excretory/secretory (ES) apparatus from muscle larvae is used for diagnosis

### Serological diagnosis of *Trichinella spp.* in pigs



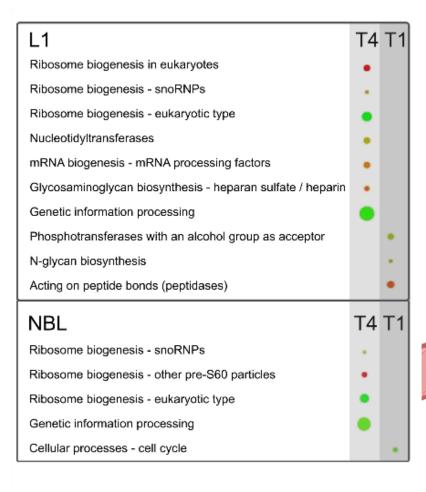

Pozio et al, 2020; adapted

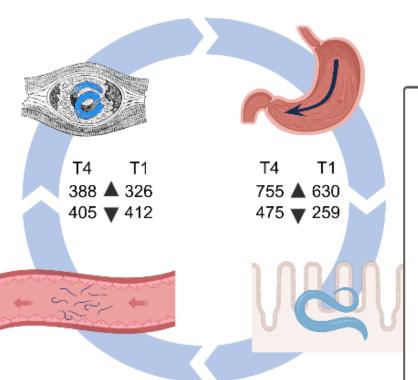
Trichinella spiralis: highest infectivity and immunogenicity in pigs. IgG level significantly increased at 30 days p.i. and reached a peak at about 60 days p.i.

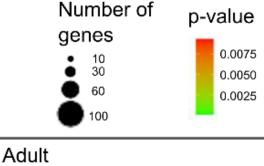
T. britovi-infected pigs, LPG was about 70 times lower than for T. spiralis at 2 months p.i. The IgG pattern showed by T. britovi-infected pigs was similar to that of T. spiralis-infected pigs, although seroconversion occurred some days later.

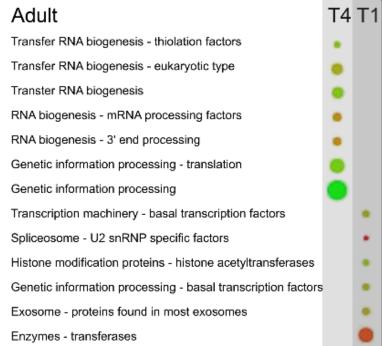
The larval burden of *T. pseudospiralis* was slightly greater than for *T. britovi* at 2 months p.i., but no larvae were detected at 6 and 12 months p.i. The IgG level showed a significant drop at 6 months p.i. and declining to the cut-off value at 12 months p.i.







Article


# Enhanced Genomic and Transcriptomic Resources for *Trichinella* pseudospiralis and T. spiralis to Underpin the Discovery of Molecular Differences between Stages and Species

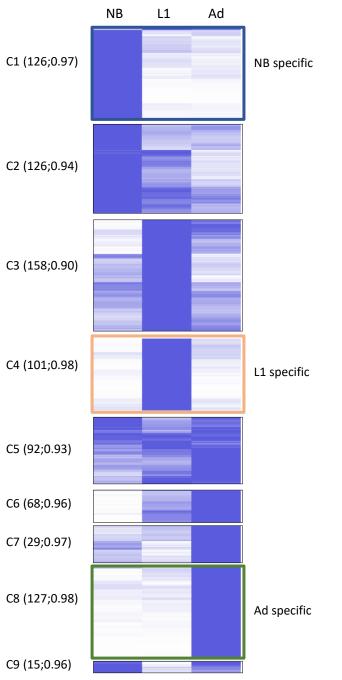

Pasi K. Korhonen <sup>1</sup>, Giuseppe La Rosa <sup>2</sup>, Sunita B. Sumanam <sup>1</sup>, Maria Angeles Gomez Morales <sup>2</sup>, Alessandra Ludovisi <sup>2</sup>, Edoardo Pozio <sup>2</sup>, Daniele Tonanzi <sup>2</sup>, Bill C. H. Chang <sup>1</sup>, Neil D. Young <sup>1</sup> and Robin B. Gasser <sup>1</sup>,\*

- enhance genomic and transcriptomic resources for selected representatives T. pseudospiralis (non-encapsulated) and T. spiralis (encapsulated);
- to characterise and compare the composition of the transcriptomes of these two representatives;
- transcriptional variation between or among selected **developmental stages** of each of these species, and link these differences to respective stage-specific biological pathways or processes;
- to explore transcriptional differences at key points of the life cycle between these representative nonencapsulated and encapsulated species.










Korhonen et al. 2024

## Looking for new candidates as potential markers for stage-specific serological diagnosis!

Testing immune sera from animals with different timing of infection

Development of a sentitive diagnostic tool, able to identify stage-specific infection



### Clustering (hierarchical) of genes differentially expressed in the 3 development stages in *T. spiralis*

Genes encoding excretory/secretory (ES) proteins, secreted or with a predicted extracellular localization in Newborn Larvae (NBLs), first-stage larvae (L1) and adult stages of *Trichinella spiralis* and *Trichinella pseudospiralis* 

Identification of 3 genes NBL specific, 3 genes L1 specific and 4 genes Adult specific with respective orthologue in *T. pseudospiralis* for a total of 10 candidates

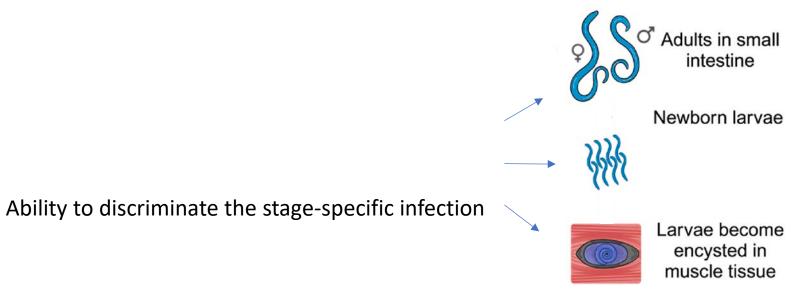
(Dr. Elisabetta Pizzi, ISS)

| Α                | В                                                                                                                                                                                                                                                                                                 | С                                                                                             | D           | Е                                                                                                                               | F                                                                                                                                                                                                                                                                             | G         |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Code             | 1 ( 3 3 7                                                                                                                                                                                                                                                                                         | ' v                                                                                           | тмнмм       | Alpha Fold                                                                                                                      | Cloning region                                                                                                                                                                                                                                                                | Cysteines |
| 1545 555         | MAAIAQLLLQLYAAVTLTNAVHPAFEANPALVSPGGSQCCILISTSSCCPHMYG DRPTCI GSGGIAPYPLGPTAPGGVQFPSIFQPTAPQPQPRPGGVFPGPIQTPPVGGGQ VNIMWPGG VQLPITEQNQRCQDILREICKYCQAAGIQPIPQPYWPRPWPTATQQTFAPFNP SAGQMQV PSPFASNQDQTQMTSLDINLPIWSPTSGQQPLPPTGVDSPWAVTWEGNPID WSKVQIPPL SPNPETNMPPNFNQQIQTDENPSVVNYPVQATTNNINRPYQ | signal peptide (1-20): MAAIAQLLLQLYAAVTLTNA                                                   | none        |                                                                                                                                 | VHPAFEANPALVSPGGSQCCILISTSSCCPHM YGDRPTCIGSGGIAPYPLGPTAPGGVQFPSIF QPTAPQPQPRPGGVFPGPIQTPPVGGGQVNI MWPGGVQLPITEQNQRCQDILREICKYCQAA GIQPIPQPYWPRPWPTATQQTFAPFNPSAGQ MQVPSPFASNQDQTQMTSLDINLPIWSPTSG QQPLPPTGVDSPWAVTWEGNPIDWSKVQIPP LSPNPETNMPPNFNQQIQTDENPSVVNYPVQ ATTNNINRPYQ | 8         |
| <u>Tsp 06566</u> | MATTCIISQIFHFHKIWAVHCTNCPLAIGQFEVQPSSTSETGLKQAFKAARRLR NFASNIVVPNTANDPCENLIQVGTVLIERERRRIIKKLLKSLVKSAERNKRRGNR GMRTCNRMLRIVQG                                                                                                                                                                     |                                                                                               | none        | high confidence for C-<br>terminus but disordered<br>N-terminus                                                                 | SSTSETGLKQAFKAARRLRNFASNIVVPNTAN<br>DPCENLIQVGTVLIERERRRIIKKLLKSLVKSAE<br>RNKRRGNRGMRTCNRMLRIVQG                                                                                                                                                                              | 5         |
|                  | MQTQSVNISFIKTDPRESSCISTLELTIEGKSYTEQNVKNFSYCLSCVTVHSSE<br>NSNLSE<br>DNLKNYLTSKNMRVPVSDDHCRETLPTELPGRHLVPIYYCSSGACVKIKGTF<br>QDEIYVVR<br>ECWDRLWDRPIKHGWQGCSVVDFMYDSMAHICVCLSNDLCNSALKIGSGQIY<br>LLLMLFMP<br>LTGLCFFNQILF                                                                          | SigPep says none but homolog in Uniprot has one. In alpha fold model it's disoredered + helix | res 169-191 | confident globular<br>domain                                                                                                    | VKNFSYCLSCVTVHSSENSNLSEDNLKNYLT<br>SKNMRVPVSDDHCRETLPTELPGRHLVPIYY<br>CSSGACVKIKGTFQDEIYVVRECWDRLWDRPI<br>KHGWQGCSVVDFMYDSMAHICVCLSNDLCN<br>SALKI                                                                                                                             | 10        |
| <u>Tsp 00292</u> | MKKYKYPLEKDVCMYYSKMVRFCSLVILLLLVPLIIDTEAKKKAKSRSPAVRNKNLES<br>DA<br>ENSSELVNNEEDEEGILKLAKKPVKQPPEEGSEMQPPKQPPEEPRGEPMEP<br>PAEMPAGPP<br>IDEPTEIKPEDQFEPPPPPEMEAGDADDVENAVEE                                                                                                                       | none                                                                                          |             | extremely low and<br>unuseful. Predicted to be<br>disordered with a few<br>helices. In fact it is<br>proline rich and lys rich. | TEAKKKAKSRSPAVRNKNLESDAENSSELVN<br>NEEDEEGILKLAKKPVKQPPEEGSEMQPPKQ<br>PPEEPRGEPMEPPAEMPAGPPIDEPTEIKPED<br>QFEPPPPPPEMEAGDADDVENAVEE                                                                                                                                           | 0         |
|                  | MSYYASYEQILRWDIRSKYGTKHALPIHSLFSFLLFEYRILHSRGFTRRHKRNN WFQKDK LKRCTEKQTEICAQTECKAEDAAMTDLLLEGESDIFDHSDFTSYATCMHRCC ARLNGAAV PPLKEGEKRRGPSKLPFQSIFEVADQKTVERCDETMCKSHRQKYENLVARTS SYKKLRSS QELKDYKECIERCDAKLNG                                                                                     |                                                                                               | none        | extremely low and<br>unuseful                                                                                                   | MSYYASYEQILRWDIRSKYGTKHALPIHSLFSF<br>LLFEYRILHSRGFTRRHKRNNWFQKDK<br>LKRCTEKQTEICAQTECKAEDAAMTDLLLEGE<br>SDIFDHSDFTSYATCMHRCCARLNGAAV<br>PPLKEGEKRRGPSKLPFQSIFEVADQKTVER<br>CDETMCKSHRQKYENLVARTSSYKKLRSS<br>QELKDYKECIERCDAKLNG                                               |           |
|                  | MSSKCLALMLFGSLVLMMVMGFDNKPALSTSSHAYDCGNENRIIRLYSFRLG PMPLVFPDVLQMHIDLEIMDKIPSQVDAHVRVEKQVTKTIWVRVPCMLQFGSC DYYRIDACLLTEEMFGCPIEIGRHNHTETYLLDSPETFNPNSLRGNYRTLVEIN NSDTGEPLACFNFIYSINGSRW                                                                                                          |                                                                                               | none        | globular. High<br>confidence A fold model                                                                                       | GFDNKPALSTSSHAYDCGNENRIIRLYSFRLG<br>PMPLVFPDVLQMHIDLEIMDKIPSQVDAHVRVE<br>KQVTKTIWVRVPCMLQFGSCDYYRIDACLLTE<br>EMFGCPIEIGRHNHTETYLLDSPETFNPNSLR<br>GNYRTLVEINNSDTGEPLACFNFIYSINGSRW                                                                                             |           |
|                  | MALKFCNAITVGLITFCCLFFAASADATTNCAEDVANFYKCIDRHYDQELGKIFT YHTAE AFSEKAIECLTKNGCEKPAFHKFKPTEESDEDDDEEGFIGKQLDAFVFRKILNP                                                                                                                                                                              | signal peptide (1-25): MALKFCNAITVGLITFCCLFFAASAD                                             | none        | globular. High<br>confidence A fold model                                                                                       | ATTNCAEDVANFYKCIDRHYDQELGKIFTYHT<br>AEAFSEKAIECLTKNGCEKPAFHKFKPTEESD<br>EDDDEEGFIGKQLDAFVFRKILNPEWFPNA                                                                                                                                                                        |           |

#### Methods

### A. Construct design and cloning

- **pET14b** N-terminal His-tag
- **His-SUMO-pET21b** N-terminal His-SUMO tag. The SUMO tag enhances expression and is readily removed using the SUMO-protease with limited non-specific proteolysis activities.
- **pET27b** N-terminal signal peptidase (SP) for pelB for periplasmic expression and C-terminal His tag. Selected for secreted and extracellular proteins may have disulphide bonds.


#### B. Screening: Expression, purification and SDS-PAGE analysis

BL21(DE3)Star, Shuffle(DE3), C41(DE3): Autoinduction media, growing at 37°C, then transferring to 20°C overnight. Plate repeated for Superior broth and IPTG-based induction. Example plate:

| $\overline{}$ |     |     |     |     |     |     |     |     |     |      |      |      |
|---------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| Vector        | Ag1 | Ag2 | Ag3 | Ag4 | Ag5 | Ag6 | Ag7 | Ag8 | Ag9 | Ag10 | pelB | pelB |
| pET14b        |     |     |     |     |     |     |     |     |     |      | Ag1  | Ag10 |
| pET21b        |     |     |     |     |     |     |     |     |     |      | Ag2  | Ag11 |
| pET27b        |     |     |     |     |     |     |     |     |     |      | Ag3  | Ag12 |
| pET14b        |     |     |     |     |     |     |     |     |     |      | Ag4  |      |
| pET21b        |     |     |     |     |     |     |     |     |     |      | Ag5  |      |
| PET27b        |     |     |     |     |     |     |     |     |     |      | Ag6  |      |
| pET14b        |     |     |     |     |     |     |     |     |     |      | Ag7  |      |
| pET21b        |     |     |     |     |     |     |     |     |     |      | Ag8  |      |

• Testing of **immune sera** collected at different time point of infection (human or animal) already available in our lab

(Dr. Alessandra Ludovisi and colleagues, ISS)





VALIDATION of the diagnostic tool

Microchip device (easy to use, for slaughter, correct treatment, outbreaks, etc....)

### Thank you for your attention!!!





