

Parasite contamination of leafy greens and berries in Norway

Norwegian University of Life Sciences
Faculty of Veterinary Medicine, Parasitology Unit
Ingrid Olstad, November 2024

Who are we?

- Research, teaching veterinary students/nurses and diagnostics
- NRL: fresh produce, drinking water and honeybee health regarding parasites

Photo: NMBU

Contamination of leafy greens and berries - what are the big questions?

- What parasites are present on leafy greens and berries in Norway?
- Pathogen surveillance

Photo: Shutterstock

Leafy geens and berries as vehicles for parasites

- «Sticky» parasite transmission stages
- Berry surfaces
- Environmental sources of contaminants

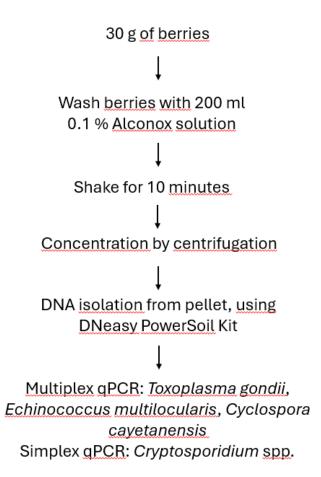
Photo: Shutterstock

Which parasites to focus on?

- The Norwegian Scientific Committee for Food and Environment (VKM): risk ranking of foodborne pathogens with highest public health impact (2021)
 - 1st place: Toxoplasma gondii
 - -(2nd place: *Campylobacter* spp.)
 - -3rd place: *Echinococcus multilocularis*
 - $-(\ldots)$
 - -9th place: *Cryptosporidium* spp.

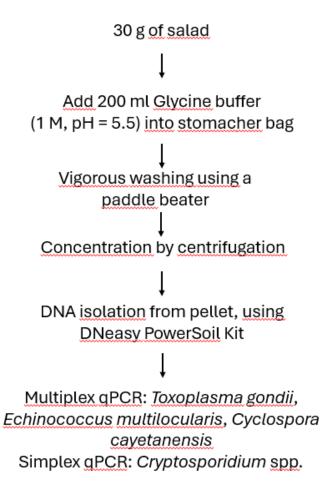
Cyclospora cayetanensis

Implementation of parasite screening of leafy greens and berries


- The PARA-BERRY project as a part of a PhD project by Tamirat Tefera Temesgen: Detection and viability assessment of foodborne parasites of public health importance on berries (2018-2021)
- IMPACT project (consortium including ISS and NMBU):
 Molecular detection of Cryptosporidium oocysts in leafy greens by real-time PCR
- Training at ISS
- Norwegian distributor of leafy greens and berries send samples for diagnostic screening (2022, 2023, 2024)

Method – berry samples

Tamirat washing berries. Photo: NMBU



Method – salad samples

Photo: Shutterstock

What do we find? – PARA-BERRY project

- Samples collected 2019/2020
- 820 samples of berries analysed (blueberries/raspberries/strawberries)
- Overall occurrence was:
 - -2.9% for *T. gondii*
 - -6.6% for *C. cayetanensis*
 - -8.3% for *Cryptosporidium* spp.
 - E. multilocularis was not detected

Berry type	No. analysed (% of total)	Parasites detected; number positive (%)				
		Echinococcus multilocularis	Toxoplasma gondii	Cyclospora cayetanensis	Cryptosporidium spp.	
Blueberries	274 (33.4)	0	4 (1.5)	15 (5.5)	9 (3.3)	
Raspberries	276 (33.7)	0	10 (3.6)	24 (8.7)	26 (9.4)	
Strawberries	270 (32.9)	0	8 (2.9)	13 (4.8)	33 (12.2)	
Total	820	0	24 (2.9)	52 (6.6)	68 (8.3)	

What do we find? – PARA-BERRY project

Country	Blueberries		Raspberries		Strawberries	
Belgium					32	1 Toxo; 2 Crypto
Chile	28	1 Toxo; 1 Cyclo; 1 Crypto				
Egypt					14	3 Crypto
Morocco	26	1 Toxo	82	4 Cyclo; 18 Crypto	2	2 Crypto
Netherlands	6	3 Cyclo	2	1 Тохо	108	2 Toxo; 4 Crypto
Norway			20	1 Toxo; 1 Crypto	66	4 Toxo; 1 Cyclo; 19 Crypto
Peru	116	1 Toxo; 8 Cyclo; 3 Crypto				
Poland	46	1 Cyclo			10	1 Toxo; 2 Crypto
Portugal	6		122	8 Toxo; 9 Cyclo; 6 Crypto		
South Africa	34	2 Cyclo; 5 Crypto				
Spain			50	11 Cyclo; 1 Crypto	38	1 Crypto
Sweden	2					
Zimbabwe	10	1 Toxo				

What do we find? – Routine diagnostics

Samples from 2022 (berries):

- 7 samples of berries analysed
- All samples were negative

Strawberries for sale. Photo: Shutterstock

What do we find? – Routine diagnostics

Samples from 2023 (berries):

- 15 samples of berries
- Two raspberry samples (Spain + Portugal) positive for *T. gondii*

Iceberg lettuce. Photo: Shutterstock

Samples from 2024 (berries + salad):

- 7 samples of berries and 8 samples of salad
- One raspberry sample (Morocco) was positive for *T. gondii* and *Cryptosporidium* spp.
- One iceberg lettuce sample (Spain) was positive for *Cryptosporidium* spp.

What does the results mean?

- Positive qPCR results = DNA detected
- Contamination?!
- DNA from parasites are not uncommon on berries, regardless of origin

Strawberry field in Norway. Photo: Shutterstock

The way forward

- The industry decides what to do
- Knowledge is key –
 diagnostics is a part of the puzzle to
 secure food safety
- Awereness on foodborne parasites


Photo: Shutterstock

References

- Panel on Biological Hazards of the Norwegian Scientific Committee for Food and Environment (2021). Risk ranking and source attribution of foodand waterborne pathogens for surveillance purposes. *VKM Report* 2021:10, ISBN: 978-82-8259-364-9
- Temesgen TT, Stigum VM, Robertson LJ. (2022). Surveillance of berries sold on the Norwegian market for parasite contamination using molecular methods. *Food Microbiol.* **104**:103980
- Temesgen TT, Robertson LJ, Tysnes KR. (2019). A novel multiplex real-time PCR for the detection of *Echinococcus multilocularis, Toxoplasma gondii*, and *Cyclospora cayetanensis* on berries. Food Res Int. **125**:108636.
- Kniel, K. E., Lindsay, D. S., Sumner, S. S., Hackney, C. R., Pierson, M. D. & Dubey, J. P. (2002). Examination of attachment and survival of *Toxoplasma gondii* oocysts on raspberries and blueberries. *Journal of Parasitology*, 88 (4): 790-793.
- Almeria, S., Cinar, N. H. & Dubey, P. J. (2019). *Cyclospora cayetanensis* and cyclosporiasis: an update. *Microorganisms*, 7 (9).
- Anne Mayer-Scholl, Barbara Šoba Šparl, Gunita Deksne, Heather Ayres, Ian Woolsey, Kristin Elwin, Lucy Robertson, Marco Lalle, Rachel Chalmers, Simone Caccio, Tamirat Temesgen (2022). IMPACT: Standardising molecular detection methods to IMprove risk assessment capacity for foodborne protozoan PArasites, using Cryptosporidium in ready-to-eat salad as a model. *EFSA-Q-2022-00083*

